1. Fang FZ, Xu FF (2018) Recent advances in micro/nano-cutting:effect of tool edge and material properties. Nanomanuf Metrol 1:4-31 2. Ng EG, El-Wardany TI, Dumitrescu M et al (2002) Physics-based simulation of high speed machining. Mach Sci Technol 6:301-329 3. Niu W, Mo R, Liu GR et al (2018) Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method. Int J Adv Manuf Technol 95:905-919 4. Nasr MNA, Ng EG, Elbestawi MA (2007) Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. Int J Mach Tool Manuf 47:401-411 5. Movahhedy MR, Altintas Y, Gadala MS (2002) Numerical analysis of metal cutting with chamfered and blunt tools. J Manuf Sci Eng 124:178-188 6. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1-34 7. Liu M, Zhang Z (2019) Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci China Phys Mech 62:984701 8. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6 9. Xiao G, To S, Zhang G (2015) Molecular dynamics modelling of brittle-ductile cutting mode transition:case study on silicon carbide. Int J Mach Tool Manuf 88:214-222 10. Pei QX, Lu C, Lee HP et al (2009) Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res Lett 4:444-451 11. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013-1024 12. Liu G, Liu M (2003) Smoothed particle hydrodynamics:a meshfree particle method. World Scientific, Singapore 13. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116:123-134 14. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Meth Eng 47:1189-1214 15. Niu W, Mo R, Chang Z et al (2019) Investigating the effect of cutting parameters of Ti-6Al-4 V on surface roughness based on a SPH cutting model. Appl Sci 9:654 16. Liu MB, Zhang ZL, Feng DL (2017) A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60:513-529 17. Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. Comput Model Eng 4:181-198 18. Ganzenmüller GC (2015) An hourglass control algorithm for Lagrangian smooth particle hydrodynamics. Comput Meth Appl Mech Eng 286:87-106 19. Limido J, Espinosa C, Salaun M et al (2011) Metal cutting modelling SPH approach. Int J Mach Mach Mater 9:177-196 20. Olleak AA, Nasr MNA, El-Hofy HA (2015) The Influence of Johnson-Cook parameters on SPH modeling of orthogonal cutting of AISI 316L. In:10th European LS-DYNA conference, Würzburg 21. Avachat CS, Cherukuri HP (2015) A parametric study of the modeling of orthogonal machining using the smoothed particle hydrodynamics method. In:ASME 2015 international mechanical engineering congress and exposition. American Society of Mechanical Engineers 22. Liu Y, Li B, Wu C et al (2018) Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism. Ceram Int 44:12194-12203 23. Demiral M (2014) SPH modeling of vibro-assisted turning of Ti alloy:influence of vibration parameters. J Vibroeng. 16:2685-2694 24. Xi Y, Bermingham M, Wang G et al (2014) SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Comput Mater Sci 84:188-197 25. Rausch MK, Karniadakis GE, Humphrey JD (2017) Modeling soft tissue damage and failure using a combined particle/continuum approach. Biomech Model Mech 16:249-261 26. Islam MRI, Peng C (2019) A Total Lagrangian SPH method for modelling damage and failure in solids. Int J Mech Sci 157:498-511 27. Leroch S, Varga M, Eder SJ et al (2016) Smooth particle hydrodynamics simulation of damage induced by a spherical indenter scratching a viscoplastic material. Int J Solids Struct 81:188-202 28. Varga M, Leroch S, Rojacz H et al (2017) Study of wear mechanisms at high temperature scratch testing. Wear 388:112-118 29. Varga M, Leroch S, Eder SJ et al (2017) Meshless microscale simulation of wear mechanisms in scratch testing. Wear 376:1122-1129 30. Varga M, Leroch S, Eder SJ et al (2019) Influence of velocity on high-temperature fundamental abrasive contact:a numerical and experimental approach. Wear 426:370-371 31. Mishra T, Ganzenmüller GC, de Rooij M et al (2019) Modelling of ploughing in a single-asperity sliding contact using material point method. Wear 418:180-190 32. Bonet J, Kulasegaram S, Rodriguez-Paz MX et al (2004) Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput Meth Appl Mech Eng 193:1245-1256 33. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1-19 34. Desbrun M, Gascuel MP (1996) Smoothed particles:a new paradigm for animating highly deformable bodies. In:Ronan B, Gerard H (eds) Computer animation and simulation'96. Springer, Vienna, pp 61-76 35. Prawoto Y, Fanone M, Shahedi S et al (2012) Computational approach using Johnson-Cook model on dual phase steel. Comput Mater Sci 54:48-55 |