1. Yue C, Gao H, Liu X et al (2019) A review of chatter vibration research in milling. Chin J Aeronaut 32(2):215-242 2. Munoa J, Beudaert X, Dombovari Z et al (2016) Chatter suppression techniques in metal cutting. CIRP Ann-Manuf Technol 65(2):785-808 3. Quintana G, Ciurana J (2011) Chatter in machining processes:A review. Int J Mach Tool Manuf 51(5):363-376 4. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann-Manuf Technol 53(2):619-642 5. Olvera D, Elı ás-Zúñiga A, Martĺnez-Alfaro H et al (2014) Determination of the stability lobes in milling operations based on homotopy and simulated annealing techniques. Mechatronics 24(3):177-185 6. Lamraoui M, Thomas M, EI Badaoui M et al (2014) Indicators for monitoring chatter in milling based on instantaneous angular speeds. Mech Syst Signal Process 44(1/2):72-85 7. Lamraoui M, Thomas M, EI Badaoui M (2014) Cyclostationarity approach for monitoring chatter and tool wear in high speed milling. Mech Syst Signal Process 44(1/2):177-198 8. Aslan D, Altintas Y (2018) On-line chatter detection in milling using drive motor current commands extracted from CNC. Int J Mach Tool Manuf 132:64-80 9. Altintas Y, Aslan D (2017) Integration of virtual and on-line machining process control and monitoring. CIRP Ann-Manuf Technol 66(1):349-352 10. Devillez A, Dudzinski D (2007) Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers. Mech Syst Signal Process 21(1):441-456 11. Albertelli P, Braghieri L, Torta M et al (2019) Development of a generalized chatter detection methodology for variable speed machining. Mech Syst Signal Process 123:26-42 12. Szydłowski M, Powałka B (2012) Chatter detection algorithm based on machine vision. Int J Adv Manuf Technol 62(5/8):517-528 13. Lei N, Soshi M (2017) Vision-based system for chatter identification and process optimization in high-speed milling. Int J Adv Manuf Technol 89(9/12):2757-2769 14. Chen Y, Li H, Jing X et al (2019) Intelligent chatter detection using image features and support vector machine. Int J Adv Manuf Technol 102(5/8):1433-1442 15. Kuljanic E, Sortino M, Totis G (2008) Multisensor approaches for chatter detection in milling. J Sound Vib 312(4):672-693 16. Kuljanic E, Totis G, Sortino M (2009) Development of an intelligent multisensor chatter detection system in milling. Mech Syst Signal Process 23(5):1704-1718 17. Wang L, Liang M (2009) Chatter detection based on probability distribution of wavelet modulus maxim. Rob Comput-Integr Manuf 25(6):989-998 18. Yao Z, Mei D, Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. J Mater Process Technol 210(5):713-719 19. Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and Hilbert-Huang transform. Int J Mach Tool Manuf 69:11-19 20. Lamraoui M, Barakat M, Thomas M et al (2015) Chatter detection in milling machines by neural network classification and feature selection. J Vib Control 21(7):1251-1266 21. Qu S, Zhao J, Wang T (2016) Three-dimensional stability prediction and chatter analysis in milling of thin-walled plate. Int J Adv Manuf Technol 86(5/8):2291-2300 22. Burtscher J, Fleischer J (2017) Adaptive tuned mass damper with variable mass for chatter avoidance. CIRP Ann-Manuf Technol 66(1):397-400 23. Friedrich J, Hinze C, Renner A et al (2017) Estimation of stability lobe diagrams in milling with continuous learning algorithms. Rob Comput-Integr Manuf 43:124-134 24. Cao H, Zhou K, Chen X (2015) Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators. Int J Mach Tool Manuf 92:52-59 25. Cao H, Yue Y, Chen X et al (2017) Chatter detection in milling process based on synchrosqueezing transform of sound signals. Int J Adv Manuf Technol 89(9/12):2747-2755 26. Liu J, Hu Y, Wu B et al (2017) A hybrid health condition monitoring method in milling operations. Int J Adv Manuf Technol 92:2069-2080 27. Gradisek J, Baus A, Govekar E et al (2003) Automatic chatter detection in grinding. Int J Mach Tool Manuf 43:1397-1403 28. Nair U, Krishna BM, Namboothiri VNN et al (2010) Permutation entropy based real-time chatter detection using audio signal in turning process. Int J Adv Manuf Technol 46(1/4):61-68 29. Shi J, Song Q, Liu Z et al (2017) A novel stability prediction approach for thin-walled component milling considering material removing process. Chin J Aeronaut 30(5):1789-1798 30. Khalifa OO, Densibali A, Faris W (2006) Image processing for chatter identification in machining processes. Int J Adv Manuf Technol 31(5/6):443-449 31. Kim SK, Lee SY (2001) Chatter prediction of end milling in a vertical machining center. J Sound Vib 241(4):567-586 32. Peng C, Wang L, Liao TW (2015) A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine. J Sound Vib 354:118-131 33. Cabrera CG, Anna CA, Daniel AC (2017) On the wavelet analysis of cutting forces for chatter identification in milling. Adv Manuf 5(2):130-142 34. Zhang Z, Li H, Meng G et al (2016) Chatter detection in milling process based on the energy entropy of VMD and WPD. Int J Mach Tool Manuf 108:106-112 35. Liu C, Zhu L, Ni C (2017) The chatter identification in end milling based on combining EMD and WPD. Int J Adv Manuf Technol 91(9/12):3339-3348 36. Liu C, Zhu L, Ni C (2018) Chatter detection in milling process based on VMD and energy entropy. Mech Syst Signal Process 105:169-182 37. Yang K, Wang G, Dong Y et al (2019) Early chatter identification based on an optimized variational mode decomposition. Mech Syst Signal Process 115:238-254 |