1. Kaldellis JK, Zafirakis D (2011) The wind energy (r)evolution: ashort review of a long history. Renew Energy 36:1887–19012. Kusiak BA, Verma A (2010) The future of wind turbine diagnostics.windsystemsmag.com, pp 66–713. Donders S (2002) Fault detection and identification for windturbine systems: a closed-loop analysis. Dissertation, UniversityTwente4. Hyers RW, Mcgowan JG, Sullivan KL et al (2006) Conditionmonitoring and prognosis of utility scale wind turbines. EnergyMater Mater Sci Eng Energy Syst 1:187–2035. Ramageri BM (2010) Data mining techniques and applications.Indian J Comput Sci Eng 1:301–3056. Alsyouf I (2004) Cost effective maintenance for competitiveadvantages. Dissertation, Va¨xjo¨ University, Sweden7. Entezami M, Hillmansen S, Weston P, Papaelias MP (2012) Faultdetection and diagnosis within a wind turbine mechanical brakingsystem using condition monitoring. Renew Energy 47:175–1828. Lu B (2009) A review of recent advances in wind turbine conditionmonitoring and fault diagnosis. In: IEEE symposium onpower electronics and machines in wind applications, pp 1–79. Hameed Z, Hong YS, Cho YM (2009) Condition monitoring andfault detection of wind turbines and related algorithms: a review.Renew Sustain Energy Rev 13:1–3910. Hameed Z, Ahn SH, Cho YM (2010) Practical aspects of acondition monitoring system for a wind turbine with emphasis onits design, system architecture, testing and installation. RenewEnergy 35:879–89411. Fischer K, Besnard F, Bertling L (2012) Reliability-centeredmaintenance for wind turbines based on statistical analysis andpractical experience. IEEE Trans Energy Convers 27:184–19512. Liu WY, Zhang WH, Han JG et al (2012) A new wind turbinefault diagnosis method based on the local mean decomposition.Renew Energy 48:411–41513. Nadakatti M, Ramachandra A, Kumar ANS (2008) Artificialintelligence-based condition monitoring for plant maintenance.Assem Autom 28:143–15014. Lei Y, Lin J, He Z et al (2012) A method based on multi-sensordata fusion for fault detection of planetary gearboxes. Sensors12:2005–201715. Amjady N, Hedayatshodeh M (2012) A new power transformerfault diagnosis system and its application for wind farms. J BasicAppl Sci Res 2:4758–476416. Uraikul V, Chan CW, Tontiwachwuthikul P (2007) Artificialintelligence for monitoring and supervisory control of processsystems. Eng Appl Artif Intell 20:115–13117. Garc?´a Ma´rquez FP, Tobias AM et al (2012) Condition monitoringof wind turbines: techniques and methods. Renew Energy46:169–17818. Wiggelinkhuizen E, Verbruggen T, Braam H et al (2008)Assessment of condition monitoring techniques for offshore windfarms. J Sol Energy Eng. doi:10.1115/1.293151219. Zaher AS, McArthur SDJ (2007) A multi-agent fault detectionsystem for wind turbine defect recognition and diagnosis. IEEELausanne Power Tech 2007:22–2720. Kim K, Parthasarathy G, Uluyol O et al (2011) Use of SCADAdata for failure detection in wind turbines. In: Conference Paper,NREL/CP-5000-51653, October 201121. Verma A, Kusiak A (2012) Fault monitoring of wind turbinegenerator brushes: a data-mining approach. J Sol Energy Eng.doi:10.1115/1.400562422. Kusiak A, Zheng H, Song Z (2009) Models for monitoring windfarm power. Renew Energy 34:583–59023. Kusiak A, Song Z, Zheng H (2009) Anticipatory control of windturbines with data-driven predictive models. IEEE Trans EnergyConvers 24:766–77424. Kusiak A, Zhang Z (2010) Analysis of wind turbine vibrationsbased on SCADA data. J Sol Energy Eng. doi:10.1115/1.400146125. Kusiak A, Zheng H, Song Z (2010) Power optimization of windturbines with data mining and evolutionary computation. RenewEnergy 35:695–70226. Ye X, Yan Y, Osadciw LA (2010) Learning decision rules byparticle swarm pptimization (PSO) for wind turbine fault diagnosis.In: Proceedings of annual conference of the prognosticsand health management society, Portland, OR, Oct 10-14, 201027. Kusiak A, Li W, Song Z (2010) Dynamic control of wind turbines.Renew Energy 35:456–46328. Uluyol O, Parthasarathy G, Foslien W et al (2011) Power curveanalytic for wind turbine performance monitoring and prognostics.In: Proceedings of annual conference of the prognostics andhealth management society, pp 1–829. Kusiak A, Li W (2011) The prediction and diagnosis of windturbine faults. Renew Energy 36:16–2330. Kusiak A, Verma A (2011) Prediction of status patterns of windturbines: a data-mining approach. J Sol Energy Eng. doi:10.1115/1.400318831. Zhang Z, Kusiak A (2012) Monitoring wind turbine vibrationbased on SCADA data. J Sol Energy Eng 134:02100432. Yang S, Li W, Wang C (2008) The intelligent fault diagnosis ofwind turbine gearbox based on artificial neural network. In:Proceedings of international conference on condition monitoringand diagnosis, pp 1327–133033. Garcia MC, Sanz-Bobi MA, del Pico J (2006) SIMAP: intelligentsystem for predictive maintenance. Comput Ind 57:552–56834. Dempsey PJ, Sheng S (2013) Investigation of data fusion appliedto health monitoring of wind turbine drivetrain components.Wind Energy 16(4):479–48935. Wilkinson M, Darnell B, Harman K (2013) Presented at EWEA2013 annual comparison of methods for wind turbine conditionmonitoring with SCADA data. EWEA 2013 annual event,Vienna, pp 4–736. Schlechtingen M, Ferreira Santos I (2011) Comparative analysisof neural network and regression based condition monitoringapproaches for wind turbine fault detection. Mech Syst SignalProcess 25:1849–1875 |