Advances in Manufacturing ›› 2021, Vol. 9 ›› Issue (2): 173-205.doi: 10.1007/s40436-020-00323-0
Lorcan O'Toole1, Cheng-Wei Kang1, Feng-Zhou Fang1,2
Received:
2020-03-08
Revised:
2020-06-11
Online:
2021-06-25
Published:
2021-05-24
Contact:
Feng-Zhou Fang
E-mail:fengzhou.fang@ucd.ie
Supported by:
Lorcan O'Toole, Cheng-Wei Kang, Feng-Zhou Fang. Precision micro-milling process: state of the art[J]. Advances in Manufacturing, 2021, 9(2): 173-205.
1. Chavoshi SZ, Goel S, Morantz P (2017) Current trends and future of sequential micro-machining processes on a single machine tool. Mater Des 127:37-53 2. Huang Y, Wang L, Liang SY (2019) Handbook of manufacturing. World Scientific Publishing Company Pte Limited, Singapore 3. Chern GL, Wu YJE, Cheng JC et al (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis Eng 31(2):122-129 4. Câmara MA, Rubio JCC, Abrão AM et al (2012) State of the art on micro-milling of materials, a review. J Mater Sci Technol 28(8):673-685 5. Uriarte L, Eguía J, Egaña F (2009) Micro-milling machines. In:López de Lacalle LN, Lamikiz A (eds) Machine tools for high performance machining. Springer, London, pp 369-397 6. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83-101 7. Wan M, Ma YC, Feng J et al (2016) Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces. Int J Mech Sci 114:120-131 8. Ahmadi K, Altintas Y (2014) Identification of machining process damping using output-only modal analysis. J Manuf Sci Eng 136(5):051017. https://doi.org/10.1115/1.4027676 9. Kim CJ, Mayor JR, Ni J (2004) A static model of chip formation in microscale milling. J Manuf Sci Eng 126(4):710-718 10. Li HZ, Liu K, Li XP (2001) A new method for determining the undeformed chip thickness in milling. J Mater Process Technol 113(1/3):378-384 11. Chen N, Chen M, Wu C et al (2017) Research in minimum undeformed chip thickness and size effect in micro end-milling of potassium dihydrogen phosphate crystal. Int J Mech Sci 134:387-398 12. Liu X, DeVor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Eng 128(2):474-481 13. Niu Z, Jiao F, Cheng K (2018) An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. J Manuf Process 31:382-394 14. Fang F, Xu F (2018) Recent advances in micro/nano-cutting:effect of tool edge and material properties. Nanomanuf Metrol 1(1):4-31 15. Li G, Qu D, Feng WW et al (2016) Modeling and experimental study on the force of micro-milling titanium alloy based on tool runout. Int J Adv Manuf Technol 87(1/4):1193-1202 16. Lai X, Li H, Li C et al (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1-14 17. Komatsu T, Yoshino T, Matsumura T et al (2012) Effect of crystal grain size in stainless steel on cutting process in micromilling. Procedia CIRP 1:150-155 18. Uriarte L, Azcárate S, Herrero A et al (2008) Mechanistic modelling of the micro end milling operation. Proc Inst Mech Eng Part B J Eng Manuf 222(1):23-33 19. Arizmendi M, Campa FJ, Fernández J et al (2009) Model for surface topography prediction in peripheral milling considering tool vibration. CIRP Ann 58(1):93-96 20. Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45(4/5):529-535 21. Malekian M, Mostofa MG, Park SS et al (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212(3):553-559 22. Ramos AC, Autenrieth H, Strauß T et al (2012) Characterization of the transition from ploughing to cutting in micro machining and evaluation of the minimum thickness of cut. J Mater Process Technol 212(3):594-600 23. Fang FZ, Lee LC, Liu XD (2005) Mean flank temperature measurement in high speed dry cutting of magnesium alloy. J Mater Process Technol 167(1):119-123 24. Lu X, Jia Z, Wang F et al (2018) Model of the instantaneous undeformed chip thickness in micro-milling based on tooth trajectory. Proc Inst Mech Eng Part B J Eng Manuf 232(2):226-239 25. Arif M, Zhang XQ, Rahman M et al (2013) A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials. Int J Mach Tools Manuf 64:114-122 26. Fang FZ, Liu XD, Lee LC (2003) Micro-machining of optical glasses-a review of diamond-cutting glasses. Sadhana 28(5):945-955 27. Yang M, Li C, Zhang Y et al (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55-65 28. Rodrigues AR, Jasinevicius RG (2017) Machining scale. Microfabrication and precision engineering. Elsevier, Amsterdam, pp 27-68 29. Pálmai Z, Csernák G (2013) Effects of built-up edge-induced oscillations on chip formation during turning. J Sound Vib 332(8):2057-2069 30. Nakayama K (1966) Relationship between cutting forces, temperatures, built-up edge and surface finish. Ann CIRP 14:211-223 31. Childs THC (2011) Towards simulating built-up-edge formation in the machining of steel. CIRP J Manuf Sci Technol 4(1):57-70 32. Ozcatalbas Y (2003) Chip and built-up edge formation in the machining of in situ Al4C3-Al composite. Mater Des 24(3):215-221 33. Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy:Experimental validations on chip flow and tool wear. J Mater Process Technol 221:128-145 34. Wang Z, Kovvuri V, Araujo A et al (2016) Built-up-edge effects on surface deterioration in micro-milling processes. J Manuf Process 24:321-327 35. Davoudinejad A, Tosello G, Annoni M (2017) Influence of the worn tool affected by built-up edge (BUE) on micro end-milling process performance:a 3D finite element modeling investigation. Int J Precis Eng Manuf 18(10):1321-1332 36. Ucun İ, Aslantas K, Bedir F (2015) The performance of DLCcoated and uncoated ultra-fine carbide tools in micro-milling of Inconel 718. Precis Eng 41:135-144 37. Aslantas K, Hopa HE, Percin M et al (2016) Cutting performance of nano-crystalline diamond (NCD) coating in micromilling of Ti6Al4V alloy. Precis Eng 45:55-66 38. Oliaei SNB, Karpat Y (2017) Built-up edge effects on process outputs of titanium alloy micro milling. Precis Eng 49:305-315 39. Ahmadi M, Karpat Y, Acar O et al (2018) Microstructure effects on process outputs in micro scale milling of heat treated Ti6Al4V titanium alloys. J Mater Process Technol 252:333-347 40. Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4V:3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4/5):435-444 41. Lee K, Dornfeld DA (2002) An experimental study on burr formation in micro-milling aluminium and copper. Dearborn, Mich. Society of Manufacturing Engineers, pp 1-8 42. Aurich JC, Dornfeld D, Arrazola PJ et al (2009) Burrs-analysis, control and removal. CIRP Ann 58(2):519-542 43. Niknam SA, Davoodi B, Davim JP et al (2018) Mechanical deburring and edge-finishing processes for aluminum parts-a review. Int J Adv Manuf Technol 95(1/4):1101-1125 44. Fang FZ, Xiong Z, Hu XT (2006) An experimental study of micromachining step-mirrors for laser-diode beam shaping. J Micromech Microeng 16(2):214-218 45. Fang FZ, Liu YC (2004) On minimum exit-burr in micro cutting. J Micromech Microeng 14(7):984-988 46. Jin CZ, Kang IS, Park JH et al (2009) The characteristics of cutting forces in the micro-milling of AISI D2 steel. J Mech Sci Technol 23(10):2823-2829 47. Saptaji K, Subbiah S, Dhupia JS (2012) Effect of side edge angle and effective rake angle on top burrs in micro-milling. Precis Eng 36(3):444-450 48. Chern GL (2006) Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. Int J Mach Tools Manuf 46(12/13):1517-1525 49. Hashimura M, Hassamontr J, Dornfeld DA (1999) Effect of inplane exit angle and rake angles on burr height and thickness in face milling operation. J Manuf Sci Eng 121(1):13-19 50. Litwinski KM, Min S, Lee DE, Dornfeld DA, Lee N (2006) Scalability of tool path planning to micro machining. In:1st international conference on micromanufacturing ICOMM, U. of Illinois, Urbana-Champaign, September, Paper No. 28 51. Kiswanto G, Zariatin DL, Ko TJ (2014) The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. J Manuf Process 16(4):435-450 52. Medeossi F, Sorgato M, Bruschi S et al (2018) Novel method for burrs quantitative evaluation in micro-milling. Precis Eng 54:379-387 53. Chen W, Teng X, Zheng L et al (2018) Burr reduction mechanism in vibration-assisted micro milling. Manuf Lett 16:6-9 54. Li G, Wang B, Xue J et al (2019) Development of vibrationassisted micro-milling device and effect of vibration parameters on surface quality and exit-burr. Proc Inst Mech Eng Part B J Eng Manuf 233(6):1723-1729 55. Niu Z, Jiao F, Cheng K (2018) Investigation on innovative dynamic cutting force modelling in micro-milling and its experimental validation. Nanomanuf Metrol 1(2):82-95 56. Choong ZJ, Huo D, Degenaar P et al (2019) Micro-machinability and edge chipping mechanism studies on diamond micromilling of monocrystalline silicon. J Manuf Process 38:93-103 57. Piljek P, Keran Z, Math M (2014) Micromachining. Interdiscip Descr Complex Syst 12(1):1-27 58. Qin Y (2015) Micromanufacturing engineering and technology. Elsevier Science & Technology Books, Norwich 59. Gao S, Pang S, Jiao L et al (2017) Research on specific cutting energy and parameter optimization in micro-milling of heatresistant stainless steel. Int J Adv Manuf Technol 89(1/4):191-205 60. Mian AJ, Driver N, Mativenga PT (2011) Identification of factors that dominate size effect in micro-machining. Int J Mach Tools Manuf 51(5):383-394 61. Liu K, Melkote SN (2007) Finite element analysis of the influence of tool edge radius on size effect in orthogonal microcutting process. Int J Mech Sci 49(5):650-660 62. Attanasio A (2017) Tool run-out measurement in micro milling. Micromachines 8:221. https://doi.org/10.3390/mi8070221 63. Alhadeff LL, Marshall MB, Curtis DT et al (2019) Protocol for tool wear measurement in micro-milling. Wear 420(421):54-67 64. Fang FZ, Xu F, Lai M (2015) Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol 80(1/4):591-598 65. Rezaei H, Sadeghi MH, Budak E (2018) Determination of minimum uncut chip thickness under various machining conditions during micro-milling of Ti-6Al-4V. Int J Adv Manuf Technol 95(5/8):1617-1634 66. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultraprecision micro-milling machine-UltraMill. Part 1:holistic design approach, design considerations and specifications. Int J Adv Manuf Technol 47(9/12):867-877 67. Jin X, Altintas Y (2012) Prediction of micro-milling forces with finite element method. J Mater Process Technol 212(3):542-552 68. Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57(1):113-116 69. Malekian M, Park SS, Jun MBG (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7/8):586-598 70. Vogler MP, Kapoor SG, DeVor RE (2004) On the modeling and analysis of machining performance in micro-end milling, Part II:cutting force prediction. J Manuf Sci Eng 126(4):695-705 71. Vogler MP, DeVor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro-end milling, Part I:surface generation. J Manuf Sci Eng 126(4):685-694 72. Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. CIRP Ann 50(1):61-64 73. Kim JD, Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J Mater Process Technol 49(3/4):387-398 74. Vipindas K, Anand KN, Mathew J (2018) Effect of cutting edge radius on micro end milling:force analysis, surface roughness, and chip formation. Int J Adv Manuf Technol 97(1/4):711-722 75. Moges TM, Desai KA, Rao PVM (2017) On modeling of cutting forces in micro-end milling operation. Mach Sci Technol 21(4):562-581 76. Gao Q, Chen X (2019) Experimental research on micro-milling force of a single-crystal nickel-based superalloy. Int J Adv Manuf Technol 102(1/4):595-604 77. Zhang T, Liu Z, Sun X et al (2020) Investigation on specific milling energy and energy efficiency in high-speed milling based on energy flow theory. Energy 192:116596. https://doi.org/10.1016/j.energy.2019.116596 78. Fang FZ, Thoe T, Song W et al (2000) Energy dissipation in high speed milling. ICOPE-2000 Singapore 27:486-495 79. Li W, Kara S (2011) An empirical model for predicting energy consumption of manufacturing processes:a case of turning process. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1636-1646 80. Liu N, Wang SB, Zhang YF et al (2016) A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. Int J Mech Sci 118:13-20 81. Yao Y, Zhu H, Huang C et al (2019) On the relations between the specific cutting energy and surface generation in micromilling of maraging steel. Int J Adv Manuf Technol 104(1/4):585-598 82. Lauro CH, Brandão LC, Carou D et al (2015) Specific cutting energy employed to study the influence of the grain size in the micro-milling of the hardened AISI H13 steel. Int J Adv Manuf Technol 81(9/12):1591-1599 83. Vollertsen F, Biermann D, Hansen HN et al (2009) Size effects in manufacturing of metallic components. CIRP Ann 58(2):566-587 84. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann 55(2):745-768 85. Moges TM, Desai KA, Rao PVM (2018) Modeling of cutting force, tool deflection, and surface error in micro-milling operation. Int J Adv Manuf Technol 98(9/12):2865-2881 86. Uriarte L, Herrero A, Zatarain M et al (2007) Error budget and stiffness chain assessment in a micro-milling machine equipped with tools less than 0.3 mm in diameter. Precis Eng 31(1):1-12 87. Mamedov A, Layegh KSE, Lazoglu I (2013) Machining forces and tool deflections in micro milling. Procedia CIRP 8:147-151 88. Lu X, Wang H, Jia Z et al (2019) Coupled thermal and mechanical analyses of micro-milling Inconel 718. Proc Inst Mech Eng Part B J Eng Manuf 233(4):1112-1126 89. Mamedov A, Layegh KSE, Lazoglu I (2015) Instantaneous tool deflection model for micro milling. Int J Adv Manuf Technol 79(5/8):769-777 90. Oliaei SNB, Karpat Y (2016) Influence of tool wear on machining forces and tool deflections during micro milling. Int J Adv Manuf Technol 84(9/12):1963-1980 91. Rodríguez P, Labarga JE (2015) Tool deflection model for micro-milling processes. Int J Adv Manuf Technol 76(1/4):199-207 92. Lu X, Wang Yang FK, et al (2019) An indirect method for the measurement of micro-milling forces. International manufacturing science and engineering conference 58752:V002T03A013 93. Lu X, Zhang H, Jia Z et al (2017) A new method for the prediction of micro-milling tool breakage. Volume 1:Processes, Los Angeles, California, USA:V001T02A037 94. Zhang X, Yu T, Wang W (2018) Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out. Int J Mech Sci 136:124-133 95. Nghiep TN, Sarhan AAD, Aoyama H (2018) Analysis of tool deflection errors in precision CNC end milling of aerospace aluminum 6061-T6 alloy. Measurement 125:476-495 96. Liu JC, Su YL, Dong ZG et al (2014) Cutting tool run out considered cutting force estimation in micro milling processes. Appl Mech Mater 670/671:490-496 97. Zhang X, Yu T, Zhao J (2020) Surface generation modeling of micro milling process with stochastic tool wear. Precis Eng 61:170-181 98. Afazov SM, Ratchev SM, Segal J et al (2020) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56(2):28-38 99. Chen W, Sun Y, Huo D et al (2019) Modelling of the influence of tool runout on surface generation in micro milling. Chin J Mech Eng 32(2):2. https://doi.org/10.1186/s10033-019-0318-x 100. Jing X, Tian Y, Yuan Y et al (2017) A runout measuring method using modeling and simulation cutting force in micro end-milling. Int J Adv Manuf Technol 91(9/12):4191-4201 101. Chen W, Huo D, Teng X et al (2017) Surface generation modelling for micro end milling considering the minimum chip thickness and tool runout. Procedia CIRP 58:364-369 102. Zhang X, Pan X, Wang G et al (2018) Tool runout and singleedge cutting in micro-milling. Int J Adv Manuf Technol 96(1/4):821-832 103. Guo Q, Sun Y, Guo D (2011) Analytical modeling of geometric errors induced by cutter runout and tool path optimization for five-axis flank machining. Sci China Technol Sci 54(12):3180-3190 104. Guo Q, Jiang Y, Yang Z et al (2019) An accurate instantaneous uncut chip thickness model combining runout effect in micromilling using cutters with the non-uniform helix and pitch angles. Proc Inst Mech Eng Part B J Eng Manuf. https://doi.org/10.1177/0954405419889198 105. Quintana G, Ciurana J (2011) Chatter in machining processes:a review. Int J Mach Tools Manuf 51(5):363-376 106. Wiercigroch M, Krivtsov AM (2001) Frictional chatter in orthogonal metal cutting. Philos Trans Math Phys Eng Sci 359(1781):713-738 107. Wiercigroch M, Budak E (2001) Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos Trans Math Phys Eng Sci 359(1781):663-693 108. Altintas Y, Stepan G, Merdol D et al (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1(1):35-44 109. Tyler CT, Troutman J, Schmitz TL (2015) Radial depth of cut stability lobe diagrams with process damping effects. Precis Eng 40:318-324 110. Faassen RPH, van de Wouw N, Oosterling JAJ et al (2003) Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int J Mach Tools Manuf 43(14):1437-1446 111. Lu X, Jia Z, Wang X et al (2019) Measurement and prediction of vibration displacement in micro-milling of nickel-based superalloy. Measurement 145:254-263 112. Lu X, Jia Z, Wang H et al (2016) Stability analysis for micromilling nickel-based superalloy process. Int J Adv Manuf Technol 86(9/12):2503-2515 113. Mascardelli BA, Park SS, Freiheit T (2008) Substructure coupling of microend mills to aid in the suppression of chatter. J Manuf Sci Eng 130(1):011010. https://doi.org/10.1115/1.2816104 114. Tajalli SA, Movahhedy MR, Akbari J (2012) Investigation of the effects of process damping on chatter instability in micro end milling. Procedia CIRP 1:156-161 115. Jin X, Altintas Y (2013) Chatter stability model of micro-milling with process damping. J Manuf Sci Eng 135(3):031011. https://doi.org/10.1115/1.4024038 116. Tyler CT, Troutman J, Schmitz TL (2015) Radial depth of cut stability lobe diagrams with process damping effects. Precis Eng 40:318-324 117. Park SS, Rahnama R (2010) Robust chatter stability in micromilling operations. CIRP Ann 59(1):391-394 118. Song Q, Liu Z, Shi Z (2014) Chatter stability for micro-milling processes with flat end mill. Int J Adv Manuf Technol 71(5/8):1159-1174 119. Tajalli SA, Movahhedy MR, Akbari J (2014) Chatter instability analysis of spinning micro-end mill with process damping effect via semi-discretization approach. Acta Mech 225(3):715-734 120. Lu X, Jia Z, Zhang H et al (2017) Tool point frequency response prediction for micro-milling by receptance coupling substructure analysis. J Manuf Sci Eng 139(7):071004. https://doi.org/10.1115/1.4035491 121. Lu X, Jia Z, Liu S et al (2019) Chatter stability of micro-milling by considering the centrifugal force and gyroscopic effect of the spindle. J Manuf Sci Eng 141(11):1-32 122. Liu MK, Halfmann EB, Suh CS (2014) Multi-dimensional timefrequency control of micro-milling instability. J Vib Control 20(5):643-660 123. Graham E, Mehrpouya M, Nagamune R et al (2014) Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J Manuf Sci Technol 7(1):29-39 124. Wan M, Wen DY, Ma YC et al (2019) On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone. Int J Mach Tools Manuf 146:103452. https://doi.org/10.1016/j.ijmachtools.2019.103452 125. Peng Z, Li J, Yan P et al (2018) Experimental and simulation research on micro-milling temperature and cutting deformation of heat-resistance stainless steel. Int J Adv Manuf Technol 95(5/8):2495-2508 126. Lu X, Zhang H, Jia Z et al (2018) Floor surface roughness model considering tool vibration in the process of micro-milling. Int J Adv Manuf Technol 94(9/12):4415-4425 127. Lu X, Wang X, Sun J et al (2018) The influence factors and prediction of curve surface roughness in micro-milling nickelbased superalloy. Presented at the ASME 2018 13th International Manufacturing Science and Engineering Conference 128. Lu X, Zhang H, Jia Z et al (2018) Cutting parameters optimization for MRR under the constraints of surface roughness and cutter breakage in micro-milling process. J Mech Sci Technol 32(7):3379-3388 129. Lu X, Wang F, Xue L et al (2019) Investigation of material removal rate and surface roughness using multi-objective optimization for micro-milling of Inconel 718. Ind Lubr Tribol 71(6):787-794 130. Lu X, Jia Z, Lu Y et al (2017) Predicting the surface hardness of micro-milled nickel-base superalloy Inconel 718. Int J Adv Manuf Technol 93(1/4):1283-1292 131. Lu X, Jia Z, Yang K et al (2018) Analytical model of work hardening and simulation of the distribution of hardening in micro-milled nickel-based superalloy. Int J Adv Manuf Technol 97(9/12):3915-3923 132. Lu X, Jia Z, Wang H et al (2019) The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micromilling Inconel 718. Measurement 140:56-62 133. Lu X, Jia Z, Wang H et al (2018) Strain hardening properties and the relationship between strain and hardness of Inconel 718. Int J Manuf Res 13(4):330-341 134. Vogler MP, DeVor RE, Kapoor SG (2003) Microstructure-level force prediction model for micro-milling of multi-phase materials. J Manuf Sci Eng 125(2):202-209 135. Attanasio A, Gelfi M, Pola A et al (2013) Influence of material microstructures in micro-milling of Ti6Al4V Alloy. Materials 6(9):4268-4283 136. Elkaseer A, Dimov SS, Popov KB et al (2012) Modeling the material microstructure effects on the surface generation process in microendmilling of dual-phase materials. J Manuf Sci Eng 134(4):044501. https://doi.org/10.1115/1.4006851 137. Aksin A, Karpat Y (2019) Investigating microstructure effects of heat-treated commercially pure titanium (cp-Ti) based on mechanistic modeling of micro milling. Procedia CIRP 82:166-171 138. Elkaseer A, Dimov S, Pham D et al (2018) Material microstructure effects in micro-endmilling of Cu99.9E. Proc Inst Mech Eng Part B J Eng Manuf 232(7):1143-1155 139. O'Hara J, Fang F (2019) Advances in micro cutting tool design and fabrication. Int J Extreme Manuf 1(3):032003. https://doi.org/10.1088/2631-7990/ab3e7f 140. Kirsch B, Bohley M, Arrabiyeh PA et al (2017) Application of ultra-small micro grinding and micro milling tools:possibilities and limitations. Micromachines 8(9):261. https://doi.org/10.3390/mi8090261 141. Aurich JC, Reichenbach IG, Schüler GM (2012) Manufacture and application of ultra-small micro end mills. CIRP Ann 61(1):83-86 142. Cheng X, Wang Z, Nakamoto K et al (2011) A study on the micro tooling for micro/nano milling. Int J Adv Manuf Technol 53(5/8):523-533 143. Fang FZ, Wu H, Liu X et al (2003) Tool geometry study in micromachining. J Micromech Microeng 13(5):726-731 144. Katahira K, Matsumoto Y, Komotori J et al (2017) Experimental investigation of machinability and surface quality of sapphire machined with polycrystalline diamond micro-milling tool. Int J Adv Manuf Technol 93(9/12):4389-4398 145. Swain N, Venkatesh V, Kumar P et al (2017) An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills. CIRP J Manuf Sci Technol 16:34-42 146. Thepsonthi T, Özel T (2013) Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy:Effects of CBN coating on tool wear. J Mater Process Technol 213(4):532-542 147. Suzuki H, Okada M, Asai W et al (2017) Micro milling tool made of nano-polycrystalline diamond for precision cutting of SiC. CIRP Ann 66(1):93-96 148. Yang Y, Zhao G, Hu M et al (2019) Fabrication of CVD diamond micro-milling tool by hybrid machining of laser-induced graphitization and precision grinding. Ceram Int 45(18):24127-24136 149. Zou B, Zhou H, Xu K et al (2014) Study of a hot-pressed sintering preparation of Ti(C7N3)-based composite cermets materials and their performance as cutting tools. J Alloys Compd 611:363-371 150. Wang Y, Zou B, Wang J et al (2020) Effect of the progressive tool wear on surface topography and chip formation in micromilling of Ti-6Al-4V using Ti(C7N3)-based cermet micro-mill. Tribol Int 141:105900. https://doi.org/10.1016/j.triboint.2019.105900 151. Fang FZ, Zhang N (2017) Microstructure. In:Laperrière L, Reinhart G (eds) CIRP encyclopedia of production engineering. Springer, Berlin 152. Thepsonthi T, Özel T (2014) An integrated toolpath and process parameter optimization for high-performance micro-milling process of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 75(1/4):57-75 153. Wojciechowski S, Mrozek K (2017) Mechanical and technological aspects of micro ball end milling with various tool inclinations. Int J Mech Sci 134:424-435 154. Annoni M, Rebaioli L, Semeraro Q (2015) Thin wall geometrical quality improvement in micro-milling. Int J Adv Manuf Technol 79(5/8):881-895 155. Zariatin DL, Kiswanto G, Ko TJ (2017) Investigation of the micro-milling process of thin-wall features of aluminum alloy 1100. Int J Adv Manuf Technol 93(5/8):2625-2637 156. Koklu U, Basmaci G (2017) Evaluation of tool path strategy and cooling condition effects on the cutting force and surface quality in micro-milling operations. Metals 7(10):426. https://doi.org/10.3390/met7100426 157. de Souza AF, Diniz AE, Rodrigues AR et al (2014) Investigating the cutting phenomena in free-form milling using a ball-end cutting tool for die and mold manufacturing. Int J Adv Manuf Technol 71(9/12):1565-1577 158. O'Toole L, Kang C, Fang F (2019) Advances in rotary ultrasonic-assisted machining. Nanomanufacturing Metrol. https://doi.org/10.1007/s41871-019-00053-3 159. Fang FZ, Lee L, Liu X (2002) Experimental study of high speed milling of hardened steel with CL mist and chilled air.Natl Conf Precis Eng Nanotechnol.-ICPN'2002 Chang. China:251-256 160. Javaroni RL, Lopes JC, Sato BK et al (2019) Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int J Adv Manuf Technol 103(5/8):2809-2819 161. Li KM, Chou SY (2010) Experimental evaluation of minimum quantity lubrication in near micro-milling. J Mater Process Technol 210(15):2163-2170 162. Huang WT, Chou FI, Tsai JT et al (2019) Optimal design of parameters for the nanofluid/ultrasonic atomization minimal quantity lubrication in a micro-milling process. IEEE Trans Ind Inform. https://doi.org/10.1109/tii.2019.2955736 163. Pham MQ, Yoon HS, Khare V et al (2014) Evaluation of ionic liquids as lubricants in micro milling-process capability and sustainability. J Clean Prod 76(1):167-173 164. Li M, Yu T, Yang L et al (2019) Parameter optimization during minimum quantity lubrication milling of TC4 alloy with graphene-dispersed vegetable-oil-based cutting fluid. J Clean Prod 209:1508-1522 165. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining:a review. J Clean Prod 83:33-47 166. Zhao W, Ren F, Iqbal A et al (2020) Effect of liquid nitrogen cooling on surface integrity in cryogenic milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 106(3/4):1497-1508 167. Diniz AE, Micaroni R (2002) Cutting conditions for finish turning process aiming:the use of dry cutting. Int J Mach Tools Manuf 42(8):899-904 168. Chen P, Yin D, Song PF et al (2020) Demulsification and oil recovery from oil-in-water cutting fluid wastewater using electrochemical micromembrane technology. J Clean Prod 244:118698. https://doi.org/10.1016/j.jclepro.2019.118698 169. Shen ZY, Chen CY, Lee MT (2019) Recovery of cutting fluids and silicon carbide from slurry waste. J Hazard Mater 362:115-123 170. Burton G, Goo CS, Zhang Y et al (2014) Use of vegetable oil in water emulsion achieved through ultrasonic atomization as cutting fluids in micro-milling. J Manuf Process 16(3):405-413 171. Chern GL, Chang YC (2006) Using two-dimensional vibration cutting for micro-milling. Int J Mach Tools Manuf 46(6):659-666 172. Chern GL, Lee HJ (2006) Using workpiece vibration cutting for micro-drilling. Int J Adv Manuf Technol 27(7/8):688-692 173. Jin X, Xie B (2015) Experimental study on surface generation in vibration-assisted micro-milling of glass. Int J Adv Manuf Technol 81(1/4):507-512 174. Bian R, Ferraris E, Ynag Y et al (2018) Experimental investigation on ductile mode micro-milling of ZrO2 ceramics with diamond-coated end mills. Micromachines 9(3):127. https://doi.org/10.3390/mi9030127 175. Li KM, Wang SL (2014) Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proc Inst Mech Eng Part B J Eng Manuf 228(6):847-855 176. Xu L, Na H, Han G (2018) Machinablity improvement with ultrasonic vibration-assisted micro-milling. Adv Mech Eng. https://doi.org/10.1177/1687814018812531 177. Feng Y, Hsu FC, Lu YT et al (2020) Tool wear rate prediction in ultrasonic vibration-assisted milling. Mach Sci Technol 1:1-23 178. Kadivar M, Azrhoushang B, Zahedi A et al (2019) Laser-assisted micro-milling of austenitic stainless steel X5CrNi18-10. J Manuf Process 48:174-184 179. Yang Y, Zhao G, Hu M et al (2019) Laser-induced oxidation assisted micro milling of spark plasma sintered TiB2-SiC ceramic. Ceram Int 45(10):12780-12788 180. Xia H, Zhao G, Yan J et al (2019) Study on laser-induced oxidation assisted micro milling of Ti6Al4V alloy. Int J Adv Manuf Technol 103(1/4):1579-1591 181. Xia H, Zhao G, Li L et al (2019) Fabrication of high aspect ratio microgroove on Ti6Al4V by laser-induced oxidation assisted micro milling. J Manuf Process 45:419-428 182. Wu X, Li L, He N et al (2019) Laser induced oxidation of cemented carbide during micro milling. Ceram Int 45(12):15156-15163 183. Katahira K, Ohmori H, Takesue S et al (2015) Effect of atmospheric-pressure plasma jet on polycrystalline diamond micromilling of silicon carbide. CIRP Ann 64(1):129-132 184. Mustafa G, Liu J, Zhang F et al (2019) Atmospheric pressure plasma jet assisted micro-milling of Inconel 718. Int J Adv Manuf Technol 103(9/12):4681-4687 185. Ardila LKR, de Luca Ramos LWD, Conte EGD et al (2015) Micro-milling process for manufacturing of microfluidic moulds. Presented at the 23rd ABCM international congress of mechanical engineering, Rio de Janeiro, Brazil, 2015. https://doi.org/10.20906/cps/cob-2015-1250. 186. Alting L, Kimura F, Hansen HN et al (2003) Micro engineering. CIRP Ann 52(2):635-657 187. Tosello G, Hansen HN, Gasparin S (2009) Applications of dimensional micro metrology to the product and process quality control in manufacturing of precision polymer micro components. CIRP Ann 58(1):467-472 188. Godard C, Bohley M, Aurich JC et al (2015) Deformation behaviour of micro-milled cp-titanium specimens under tensile loading. Int J Mater Res 106(6):572-579 189. Yarin LP, Mosyak A, Hetsroni G (2008) Fluid flow, heat transfer and boiling in micro-channels. Springer, Berlin 190. Koo JY, Kim JS, Kim PH (2014) Machining characteristics of micro-flow channels in micro-milling process. Mach Sci Technol 18:509-521 191. Vázquez E, Rodríguez CA, Elías-Zúñiga A et al (2010) An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling. Int J Adv Manuf Technol 51(9/12):945-955 192. Bodziak S, de Souza AF, Rodrigues AR et al (2013) Surface integrity of moulds for microcomponents manufactured by micromilling and electro-discharge machining. J Braz Soc Mech Sci Eng 36:623-635 193. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46(3/4):313-332 194. Kakac S, Vasiliev LL, Bayazitoglu Y et al (2006) Microscale heat transfer-fundamentals and applications. Proceedings of the NATO advanced study institute on microscale heat transferfundamentals and applications in biological and microelectromechanical systems. Cesme-Izmir, Turkey 193 Springer Science & Business Media 195. Wang HT, Lee WB, Chan J et al (2015) Numerical and experimental analysis of heat transfer in turbulent flow channels with two-dimensional ribs. Appl Therm Eng 75:623-634 196. Zhao W, Wang H, Chen W (2019) Studying the effects of cutting parameters on burr formation and deformation of hierarchical micro-structures in ultra-precision raster milling. Int J Adv Manuf Technol 101(5/8):1133-1141 197. Fang FZ, Liu K, Kurfess TR et al (2006) Tool-based micro machining and applications in MEMS. In:MEMS/NEMS. Springer, pp 678-740 198. Toney JE (2015) Lithium niobate photonics. Artech House, Norwood 199. Wong KK (2002) Properties of lithium niobate. IET, London 200. Huo D, Choong ZJ, Shi Y et al (2016) Diamond micro-milling of lithium niobate for sensing applications. J Micromech Microeng 26:095005. https://doi.org/10.1088/0960-1317/26/9/095005 201. Wang F, Cheng X, Guo Q et al (2019) Experimental study on micro-milling of thin walls. J Micromech Microeng 29:015009. https://doi.org/10.1088/1361-6439/aaeecb 202. Chen W, Zheng L, Huo D et al (2018) Surface texture formation by non-resonant vibration assisted micro milling. J Micromech Microeng 28:025006. https://doi.org/10.1088/1361-6439/aaa06f 203. Jung YC, Bhushan B (2006) Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity. Nanotechnology 17(19):4970-4980 204. Maboudian R, Howe RT (1997) Critical review:adhesion in surface micromechanical structures. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 15(1):1-20 205. Liao H, Normand B, Coddet C (2000) Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings. Surf Coat Technol 124(2/3):235-242 206. Alpas AT, Zhang J (1994) Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. Metall Mater Trans A 25(5):969-983 207. Kanemitsu Y, Uto H, Masumoto Y et al (1993) Microstructure and optical properties of free-standing porous silicon films:size dependence of absorption spectra in Si nanometer-sized crystallites. Phys Rev B 48:2827-2830 208. Chen L, Liu Z, Li Y et al (2018) Effects of micro-milled malposed dimple structures on tribological behavior of Al-Si alloy under droplet lubricant condition. Int J Adv Manuf Technol 98(1/4):143-150 209. Qiu M, Delic A, Raeymaekers B (2012) The effect of texture shape on the load-carrying capacity of gas-lubricated parallel slider bearings. Tribol Lett 48(3):315-327 210. Mezghani S, Demirci I, Zahouani H et al (2012) The effect of groove texture patterns on piston-ring pack friction. Precis Eng 36(2):210-217 211. Sagbas B, Durakbasa MN (2013) Effect of surface patterning on frictional heating of vitamin E blended UHMWPE. Wear 303(1/2):313-320 212. Kovalchenko A, Ajayi O, Erdemir A et al (2004) The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic. Tribol Trans Phila 47(2):299-307 213. Kovalchenko A, Ajayi O, Erdemir A et al (2011) Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 271(9/10):1719-1725 214. Wang X, Adachi K, Otsuka K et al (2006) Optimization of the surface texture for silicon carbide sliding in water. Appl Surf Sci 253(3):1282-1286 215. Syahputra HP, Ko TJ (2013) Application of image processing to micro-milling process for surface texturing. Int J Precis Eng Manuf 14(9):1507-1512 216. Graham E, Park CI, Park SS (2013) Fabrication of micro-dimpled surfaces through micro ball end milling. Int J Precis Eng Manuf 14(9):1637-1646 217. Fang FZ, Wu H, Liu XD, Lim GC, Liu YC, Ng ST (2003) Fabrication of micro grooves. In:Proc ASPE 18th Annu Meeting, Portland, USA 218. Oliaei SNB, Karpat Y (2014) Experimental investigations on micro milling of stavax stainless steel. Procedia CIRP 14:377-382 219. Böhme A, Schütze F, Sauer S et al (2018) Fabrication and validation by micro-milling for bioreactor prototyping. Mater Sci Forum 941:2448-2453 220. Schlegel C, Chodorski J, Huster M et al (2017) Analyzing the influence of microstructured surfaces on the lactic acid production of Lactobacillus delbrueckii lactis in a flow-through cell system. Eng Life Sci 17(8):865-873 221. Weibel D, Whitesides G (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584-591 222. Guckenberger DJ, de Groot TE, Wan AMD et al (2015) Micromilling:a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11):2364-2378 223. Saptaji K (2016) Micro-milling of thin mould for continuous productions of polymer microfluidic device. ARPN J Eng Appl Sci 11(24):14225-14230 224. Gao P, Liang Z, Wang X et al (2018) Fabrication of a micro-lens array mold by micro ball end-milling and its hot embossing. Micromachines Basel 9(3):96. https://doi.org/10.3390/mi9030096 225. Masato D, Sorgato M, Parenti P et al (2017) Impact of deep cores surface topography generated by micro milling on the demolding force in micro injection molding. J Mater Process Technol 246:211-223 |
[1] | Ben-Kai Li, Qing Miao, Min Li, Xi Zhang, Wen-Feng Ding. An investigation on machined surface quality and tool wear during creep feed grinding of powder metallurgy nickel-based superalloy FGH96 with alumina abrasive wheels [J]. Advances in Manufacturing, 2020, 8(2): 160-176. |
[2] | Wei Zhao, Asif Iqbal, Ding Fang, Ning He, Qi Yang. Experimental study on the meso-scale milling of tungsten carbide WC-17.5Co with PCD end mills [J]. Advances in Manufacturing, 2020, 8(2): 230-241. |
[3] | Xiao-Fen Liu, Wen-Hu Wang, Rui-Song Jiang, Yi-Feng Xiong, Kun-Yang Lin. Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB2/7050Al metal matrix composites [J]. Advances in Manufacturing, 2020, 8(2): 252-264. |
[4] | Szymon Wojciechowski, Zbigniew Nowakowski, Radomir Majchrowski, Grzegorz Królczyk. Surface texture formation in precision machining of direct laser deposited tungsten carbide [J]. Advances in Manufacturing, 2017, 5(3): 251-260. |
[5] | Yung-Tien Liu, You-Liang Kuo, Da-Wei Yan. System integration for on-machine measurement using a capacitive LVDT-like contact sensor [J]. Advances in Manufacturing, 2017, 5(1): 50-58. |
[6] | M. S. Uddin, Binh Pham, Ahmed Sarhan, Animesh Basak, Alokesh Pramanik. Comparative study between wear of uncoated and TiAlN-coated carbide tools in milling of Ti6Al4V [J]. Advances in Manufacturing, 2017, 5(1): 83-91. |
[7] | D. Biermann, H. Abrahams, M. Metzger. Experimental investigation of tool wear and chip formation in cryogenic machining of titanium alloys [J]. Advances in Manufacturing, 2015, 3(4): 292-299. |
[8] | Jing Li, Hui Qian, Biao Li, Nan-Yan Shen. Research on the influences of torsional deformation on contour precision of the crank pin [J]. Advances in Manufacturing, 2015, 3(2): 123-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn