1. Li J, Zhan W, Hu Y et al (2020) Generic tracking and probabilistic prediction framework and its application in autonomous driving. IEEE Trans Intell Transp Syst 21(9):3634-3649 2. Fukunaga K, Hostetler LD (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32-40 3. Liu B, Huang J, Kulikowski C et al (2013) Robust visual tracking using local sparse appearance model and K-selection. IEEE Trans Pattern Anal Mach Intell 35(12):2968-2981 4. Elhoseny M (2019) Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems. Circuits Syst Signal Process 39(2):611-630 5. Aftab W, Mihaylova L (2021) A learning Gaussian process approach for maneuvering target tracking and smoothing. IEEE Trans Aerosp Electron Syst 57(1):278-292 6. Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. In:IEEE conference on computer vision and pattern recognition, Anchorage, USA, pp 23-28. https://doi.org/10.1109/CVPR.2008.4587584 7. Shitrit HB, Berclaz J, Fleuret F et al (2014) Multi-commodity network flow for tracking multiple people. IEEE Trans Pattern Anal Mach Intell 36(8):1614-1627 8. Zamir AR, Dehghan A, Shah M (2012) GMCP-tracker:global multi-object tracking using generalized minimum clique graphs. In:Fitzgibbon A, Lazebnik S, Perona P et al (eds) Computer vision-ECCV 2012:Lecture notes in computer science. Springer, Berlin. https://doi.org/10.1007/978-3-642-33709-3_25 9. Milan A, Roth S, Schindler K (2014) Continuous energy minimization for multitarget tracking. IEEE Trans Pattern Anal Mach Intell 36(1):58-72 10. Dehghan A, Assari SM, Shah M (2015) GMMCP tracker:globally optimal generalized maximum multi clique problem for multiple object tracking. In IEEE conference on computer vision and pattern recognition, Boston, USA, 7-12 June, pp 4091-4099. https://doi.org/10.1109/CVPR.2015.7299036 11. Zhou H, Ouyang WL, Cheng J et al (2019) Deep continuous conditional random fields with asymmetric inter-object constraints for online multi-object tracking. IEEE Trans Circuits Syst Video Technol 29(4):1011-1022 12. Xiang J, Sang N, Hou J et al (2016) Multitarget tracking using hough forest random field. IEEE Trans Circuits Syst Video Technol 26(11):2028-2042 13. Sun SJ, Akhtar N, Song HS et al (2021) Deep affinity network for multiple object tracking. IEEE Trans Pattern Anal Mach Intell 43(1):104-119 14. Ge Z, Chang F, Liu H (2017) Multi-target tracking based on Kalman filtering and optical flow histogram. In:2017 Chinese automation congress (CAC), Jinan, China, 20-22 Oct, pp 2540-2545. https://doi.org/10.1109/CAC.2017.8243203 15. Zhao Z, Yu S, Wu X (2009) A multi-target tracking algorithm using texture for real-time surveillance. In:IEEE international conference on robotics and biomimetics, Bangkok, Thailand, 22-25 Feb, pp 2150-2155. https://doi.org/10.1109/ROBIO.2009.4913335 16. Sheng H, Zhang Y, Chen J et al (2019) Heterogeneous association graph fusion for target association in multiple object tracking. IEEE Trans Circuits Syst Video Technol 29(11):3269-3280 17. Yang AL, Ren HY, Fei MR et al (2020) Dynamic body vision localization approach based on multiple regression. Chinese Journal of Scientific Instrument 41(7):252-260 18. Xu Y, Yu G, Wang Y et al (2016) A hybrid vehicle detection method based on Viola-Jones and HOG+SVM from UAV Images. Sensors 16(8):1325-1347 |