1. Zheng T, Ardolino M, Bacchetti A et al (2021) The applications of Industry 4.0 technologies in manufacturing context:a systematic literature review. Int J Prod Res 59:1922-1954 2. Graf A (2021) Aluminum alloys for lighweight automotive structures. In:Mallick PK (ed) Materials, design and manufacturing for lightweight vehicles, 2nd edn. Woodhead Publishing, pp 97-123 3. Li Y, Zou W, Lee B et al (2020) Research progress of aluminum alloy welding technology. Int J Adv Manuf Tech 109:1207-1218 4. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mat Sci Eng R 50:1-78 5. Gibson BT, Lammlein DH, Prater TJ et al (2014) Friction stir welding:process, automation, and control. J Manuf Process 16:56-73 6. Rai R, De A, Bhadeshia HKDH et al (2011) Review:friction stir welding tools. Sci Technol Weld Joi 16:325-342 7. Meng X, Huang Y, Cao J et al (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci 115:100706. https://doi.org/10.1016/j.pmatsci.2020.100706 8. He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1-66 9. Chen G, Zhang S, Zhu Y et al (2020) Thermo-mechanical analysis of friction stir welding:a review on recent advances. Acta Metall Sin-engl 33:3-12 10. Su H, Wu CS, Pittner A et al (2014) Thermal energy generation and distribution in friction stir welding of aluminum alloys. Energy 77:720-731 11. Colegrove PA, Shercliff HR (2006) CFD modeling of friction stir welding of thick plate 7449 aluminum alloy. Sci Technol Weld Joi 11:429-441 12. Chen G, Shi Q, Li Y et al (2013) Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy. Comp Mater Sci 79:540-546 13. Hamilton C, Dymek S, Sommers A (2008) A thermal model of friction stir welding in aluminum alloys. Int J Mach Tool Manu 48:1120-1130 14. Song M, Kovacevic R (2003) Numerical and experimental study of the heat transfer process in friction stir welding. P I MechEng B-J Eng 217:73-85 15. Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding:input torque based model. Sci Technol Weld Joi 165:165-174 16. Schmidt HNB, Dickerson TL, Hattel JH (2006) Material flow in butt friction stir welds in AA2024-T3. Acta Mater 54:1199-1209 17. Schmidt HNB, Hattel JH, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sc 12:143-157 18. Gerlich A, Yamamoto M, North TH (2007) Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds. Metall Mater Trans A 38:1291-1302 19. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction stir welding-process, weldment structure and properties. Prog Mater Sci 53:980-1023 20. Nandan R, Roy GG, Lienert TJ et al (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55:883-895 21. Arora A, Nandan R, Reynolds AP et al (2009) Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scripta Mater 60:13-16 22. Heurtier P, Jones MJ, Desrayaud C et al (2006) Mechanical and thermal modeling of friction stir welding. J Mater Process Tech 171:348-357 23. Liechty BC, Webb BW (2008) Modeling the frictional boundary condition in friction stir welding. Int J Mach Tool Manu 48:1474-1485 24. Qian JW, Li JL, Xiong JT et al (2012) Periodic variation of torque and its relations to interfacial sticking and slipping during friction stir welding. Sci Technol Weld Joi 17:338-341 25. Su H, Wu CS, Bachmann M et al (2015) Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding. Mater Design 77:114-125 26. Chen G, Feng Z, Zhu Y et al (2016) An alternative frictional boundary condition for computational fluid dynamics simulation of friction stir welding. J Mater Eng Perform 25:4016-4023 27. Chen G, Ma Q, Zhang S et al (2018) Computational fluid dynamics simulation of friction stir welding:a comparative study on different frictional boundary conditions. J Mater Sci Technol 34:128-134 28. Chen G, Li H, Wang G et al (2018) Effects of pin thread on the in-process material flow behavior during friction stir welding:a computational fluid dynamics study. Int J Mach Tool Manu 124:12-21 29. Gratecap F, Girard M, Marya S et al (2012) Exploring material flow in friction stir welding:tool eccentricity and formation of banded structures. Int J Mater Form 5:99-107 30. Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing:science and engineering. Springer, Switzerland 31. Zhai M, Wu CS, Su H (2020) Influence of tool tilt angle on heat transfer and material flow in friction stir welding. J Manuf Process 59:98-112 32. Su H, Wu CS, Pittner A et al (2013) Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding. J Manuf Process 15:495-500 33. Fonda RW, Rowenhorst DJ, Knipling KE (2019) 3D material flow in friction stir welds. Metall Mater Trans A 50:655-663 34. Fonda RW, Bingert JF, Colligan KJ (2004) Development of grain structure during friction stir welding. Scripta Mater 51:243-248 35. Su H, Wang T, Wu C (2021) Formation of the periodic material flow behaviour in friction stir welding. Sci Technol Weld Joi 26:286-293 36. Sheppard T, Jackson A (1997) Constitutive equations for use in prediction of flow stress during extrusion of aluminum alloys. Mater Sci Tech-lond 13:203-209 |