Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (2): 137-154.doi: 10.1007/s40436-018-0218-9
• ARTICLES • 下一篇
Cheng-Wei Kang1, Feng-Zhou Fang1,2
收稿日期:
2017-11-17
修回日期:
2018-03-14
出版日期:
2018-06-25
发布日期:
2018-06-27
通讯作者:
Feng-Zhou Fang
E-mail:fengzhou.fang@ucd.ie
基金资助:
Cheng-Wei Kang1, Feng-Zhou Fang1,2
Received:
2017-11-17
Revised:
2018-03-14
Online:
2018-06-25
Published:
2018-06-27
Contact:
Feng-Zhou Fang
E-mail:fengzhou.fang@ucd.ie
Supported by:
摘要: The manufacturing of bioimplants not only involves selecting proper biomaterials with satisfactory bulk physicochemical properties, but also requires special treatments on surface chemistry or topography to direct a desired host response. The lifespan of a bioimplant is also critically restricted by its surface properties. Therefore, developing proper surface treatment technologies has become one of the research focuses in biomedical engineering. This paper covers the recent progress of surface treatment of bioimplants from the aspects of coating and topography modification. Pros and cons of various technologies are discussed with the aim of providing the most suitable method to be applied for different biomedical products. Relevant techniques to evaluate wear, corrosion and other surface properties are also reviewed.
The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-018-0218-9
Cheng-Wei Kang, Feng-Zhou Fang. State of the art of bioimplants manufacturing: part II[J]. Advances in Manufacturing, 2018, 6(2): 137-154.
Cheng-Wei Kang, Feng-Zhou Fang. State of the art of bioimplants manufacturing: part II[J]. Advances in Manufacturing, 2018, 6(2): 137-154.
1. Kurtz S, Ong K, Lau E et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS 89(4):780-785 2. Prakasam M, Locs J, Salma-Ancane K et al (2017) Biodegradable materials and metallic implants-a review. J Funct Biomater 8(4):44 3. Roach P, Eglin D, Rohde K et al (2007) Modern biomaterials:a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med 18(7):1263-1277 4. Hornberger H, Virtanen S, Boccaccini A (2012) Biomedical coatings on magnesium alloys-a review. Acta Biomater 8(7):2442-2455 5. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573-1583 6. Bauer S, Schmuki P, von der Mark K et al (2013) Engineering biocompatible implant surfaces:part I:materials and surfaces. Prog Mater Sci 58(3):261-326 7. Wennerberg A, Albrektsson T, Andersson B et al (1995) A histomorghometric study of screw-shaped and removal torque titanium implants with three different surface topographies. Clin Oral Implant Res 6(1):24-30 8. Wennerberg A, Hallgren C, Johansson C et al (1998) A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implant Res 9(1):11-19 9. Ramsden JJ, Allen DM, Stephenson DJ et al (2007) The design and manufacture of biomedical surfaces. CIRP Ann Manuf Technol 56(2):687-711 10. Guo Y, Caslaru R (2011) Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces. J Mater Process Technol 211(4):729-736 11. Hu T, Hu L, Ding Q (2012) Effective solution for the tribological problems of Ti-6Al-4V:combination of laser surface texturing and solid lubricant film. Surf Coat Technol 206(24):5060-5066 12. Heimann RB (2008) Plasma-spray coating:principles and applications. Wiley, Weinheim 13. Mittal M, Nath S, Prakash S (2013) Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Mater Sci Eng C 33(5):2838-2845 14. Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant:a review paper. Int J Adhes Adhes 48:238-257 15. Cook SD, Thomas KA, Kay JF et al (1988) Hydroxyapatitecoated porous titanium for use as an orthopedic biologic attachment system. Clin Orthop Relat Res 230:303 16. Søballe K, Hansen ES, Brockstedt-Rasmussen H et al (1990) Hydroxyapatite coating enhances fixation of porous coated implants:a comparison in dogs between press fit and noninterference fit. Acta Orthop Scand 61(4):299-306 17. Jansen J, van de Waerden J, Wolke J et al (1991) Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res Part A 25(8):973-989 18. Moroni A, Caja V, Sabato C et al (1994) Bone ingrowth analysis and interface evaluation of hydroxyapatite coated versus uncoated titanium porous bone implants. J Mater Sci Mater Med 5(6):411-416 19. Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant:a review paper. Int J Adhes Adhes 48:238-257 20. Yang YC, Chang E (2001) Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials 22(13):1827-1836 21. Nimb L, Gotfredsen K, Steen JJ (1993) Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study. Acta Orthop Belg 59:333 22. Yang Y, Kim KH, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 26(3):327-337 23. Ong JL, Harris LA, Lucas LC et al (1991) X-ray photoelectron spectroscopy characterization of ion-beam sputter-deposited calcium phosphate coatings. J Am Ceram Soc 74(9):2301-2304 24. Ozeki K, Yuhta T, Aoki H et al (2000) Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. Bio-Med Mater Eng 10(3-4):221-227 25. Toque JA, Herliansyah M, Hamdi M et al (2010) Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing. J Mech Behav Biomed Mater 3(4):324-330 26. Ozeki K, Fukui Y, Aoki H (2006) Hydroxyapatite coated dental implants by sputtering technique. Biocybern Biomed Eng 26(1):95-101 27. Ozeki K, Yuhta T, Fukui Y et al (2002) Phase composition of sputtered films from a hydroxyapatite target. Surf Coat Technol 160(1):54-61 28. Van Dijk K, Schaeken H, Wolke J et al (1996) Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 17(4):405-410 29. Rautray TR, Narayanan R, Kim KH (2011) Ion implantation of titanium based biomaterials. Prog Mater Sci 56(8):1137-1177 30. Sioshansi P, Tobin EJ (1996) Surface treatment of biomaterials by ion beam processes. Surf Coat Technol 83(1-3):175-182 31. Serekian P (2004) Hydroxyapatite:from plasma spray to electrochemical deposition. In:The fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer, pp 29-33 32. Krupa D, Baszkiewicz J, Kozubowski J et al (2002) Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials 23(16):3329-3340 33. Choi JM, Kim HE, Lee IS (2000) Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21(5):469-473 34. Chen XB, Li YC, Du PJ et al (2009) Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater 5(5):1808-1820 35. Yoshinari M, Oda Y, Kato T et al (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22(14):2043-2048 36. Blawert C, Dietzel W, Ghali E et al (2006) Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv Eng Mater 8(6):511-533 37. Zhang X, Zhao Z, Wu F et al (2007) Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. J Mater Sci 42(20):8523-8528 38. Jo JH, Hong JY, Shin KS et al (2012) Enhancing biocompatibility and corrosion resistance of Mg implants via surface treatments. J Biomater Appl 27(4):469-476 39. Sarkar P, Nicholson PS (1996) Electrophoretic deposition (EPD):mechanisms, kinetics, and application to ceramics. J Am Ceram Soc 79(8):1987-2002 40. Wei M, Ruys A, Milthorpe B et al (2001) Electrophoretic deposition of hydroxyapatite coatings on metal substrates:a nanoparticulate dual-coating approach. J Sol Gel Sci Technol 21(1):39-48 41. Soares GA, de Sena LÁ, Rossi AM et al (2003) Effect of electrophoretic apatite coating on osseointegration of titanium dental implants. Key Eng Mater 254-256:729-732 42. Nie X, Leyland A, Matthews A (2000) Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Technol 125(1):407-414 43. Zhang Z, Dunn MF, Xiao T et al (2002) Nanostructured hydroxyapatite coatings for improved adhesion and corrosion resistance for medical implants. Mater Res Soc Symp Proc 291-296 44. Larker HT, Larker R (1991) Hot isostatic pressing. In:Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology. VCH, Weinheim, pp 146-174 45. Khor K, Yip C, Cheang P (1997) Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4V/hydroxyapatite composite coatings. J Mater Process Technol 71(2):280-287 46. Bao Q, Chen C, Wang D et al (2005) Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl Surf Sci 252(5):1538-1544 47. Cotell CM, Chrisey DB, Grabowski KS et al (1992) Pulsed laser deposition of hydroxylapatite thin films on Ti-6Al-4V. J Appl Biomater 3(2):87-93 48. Fernández-Pradas J, García-Cuenca M, Clèries L et al (2002) Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy. Appl Surf Sci 195(1):31-37 49. Cotell C (1993) Pulsed laser deposition and processing of biocompatible hydroxylapatite thin films. Appl Surf Sci 69(1-4):140-148 50. Klein LC (2013) Sol-gel optics:processing and applications, vol259. Springer, New York 51. Uhlmann D, Suratwala T, Davidson K et al (1997) Sol-gel derived coatings on glass. J Non-Cryst Solids 218:113-122 52. Wen C, Xu W, Hu W et al (2007) Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomater 3(3):403-410 53. Phani A, Gammel F, Hack T et al (2005) Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys. Mater Corros 56(2):77-82 54. Mavis B, Taş AC (2000) Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates. J Am Ceram Soc 83(4):989-991 55. Gu X, Zheng Y, Lan Q, Cheng Y et al (2009) Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan. Biomed Mater 4(4):044109 56. Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications:a review. Acta Biomater 8(1):20-30 57. Wang H, Guan S, Wang X et al (2010) In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 6(5):1743-1748 58. Kumar RR, Wang M (2002) Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater Lett 55(3):133-137 59. Loh N, Sia K (1992) An overview of hot isostatic pressing. J Mater Process Technol 30(1):45-65 60. Fu Y, Batchelor A (1998) Hot isostatic pressing of hydroxyapatite coating for improved fretting wear resistance. J Mater Sci Lett 17(20):1695-1696 61. Kameyama T (1999) Hybrid bioceramics with metals and polymers for better biomaterials. Bull Mater Sci 22(3):641-646 62. Narayanan R, Seshadri S, Kwon T et al (2008) Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater 85(1):279-299 63. Boyd IW (1994) Thin film growth by pulsed laser deposition. In:Laser in der Technik/Laser in Engineering. Springer, pp 349-359 64. Eason R (2007) Pulsed laser deposition of thin films:applications-led growth of functional materials. Wiley, Southampton 65. Jelinek M, Olsan V, Jastrabik L et al (1995) Effect of processing parameters on the properties of hydroxylapatite films grown by pulsed laser deposition. Thin Solid Films 257(1):125-129 66. Arias JL, Mayor MB, Pou J et al (2003) Micro-and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 24(20):3403-3408 67. Blind O, Klein LH, Dailey B et al (2005) Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4V substrates. Dent Mater 21(11):1017-1024 68. Mehrotra RC (1990) Chemistry of alkoxide precursors. J NonCryst Solids 121(1-3):1-6 69. Olding T, Sayer M, Barrow D (2001) Ceramic sol-gel composite coatings for electrical insulation. Thin Solid Films 398:581-586 70. Zhang S, Li Q, Fan J et al (2009) Novel composite films prepared by sol-gel technology for the corrosion protection of AZ91D magnesium alloy. Prog Org Coat 66(3):328-335 71. Kim HW, Kim HE, Knowles JC (2004) Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17):3351-3358 72. Aegerter MA, Mennig M (2013) Sol-gel technologies for glass producers and users. Springer, New York 73. Kern M, Thompson V (1994) Effects of sandblasting and silicacoating procedures on pure titanium. J Dent 22(5):300-306 74. Wennerberg A (1998) The importance of surface roughness for implant incorporation. Int J Mach Tools Manuf 38(5-6):657-662 75. Valverde GB, Jimbo R, Teixeira HS et al (2013) Evaluation of surface roughness as a function of multiple blasting processing variables. Clin Oral Implants Res 24(2):238-242 76. Mohammadi Z, Ziaei-Moayyed A, Mesgar ASM (2007) Grit blasting of Ti-6Al-4V alloy:optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings. J Mater Process Technol 194(1):15-23 77. Arifvianto B, Suyitno K, Mahardika M (2012) Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel. Surf Coat Technol 210:176-182 78. Thompson G, Puleo D (1996) Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse in vitro. Biomaterials 17(20):1949-1954 79. Piattelli A, Degidi M, Paolantonio M et al (2003) Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials 24(22):4081-4089 80. Müeller WD, Gross U, Fritz T et al (2003) Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin Oral Implants Res 14(3):349-356 81. Novaes Jr AB, Souza SL, de Oliveira PT et al (2002) Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. Int J Oral Maxillofac Implants 17(3):377-383 82. Piattelli M, Scarano A, Paolantonio M et al (2002) Bone response to machined and resorbable blast material titanium implants:an experimental study in rabbits. J Oral Implantol 28(1):2-8 83. Le Guéhennec L, Soueidan A, Layrolle P et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844-854 84. Costa HL, Hutchings IM (2008) Ink-jet printing for patterning engineering surfaces. In:NIP & digital fabrication conference, 2008. vol 1. Society for Imaging Science and Technology, pp 256-259 85. Bruzzone A, Costa H, Lonardo P et al (2008) Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol 57(2):750-769 86. Buser D, Nydegger T, Oxland T et al (1999) Interface shear strength of titanium implants with a sandblasted and acid-etched surface:a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res Part A 45(2):75-83 87. Cooper LF, Zhou Y, Takebe J et al (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO2 gritblasted c.p. titanium endosseous implants. Biomaterials 27(6):926-936 88. Ellingsen JE, Johansson CB, Wennerberg A et al (2004) Improved retention and bone-to-implant contact with fluoridemodified titanium implants. Int J Oral Maxillofac Implants 19(5):659-666 89. Aboushelib M, Feilzer A (2006) New surface treatment for zirconia based materials. European patent application (050773969) 90. Aboushelib MN, Feilzer AJ, Kleverlaan CJ (2010) Bonding to zirconia using a new surface treatment. J Prosthodont 19(5):340-346 91. Aboushelib MN, Salem NA, Taleb ALA et al (2013) Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol 39(5):583-590 92. Perrin D, Szmukler-Moncler S, Echikou C et al (2002) Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res 13(5):465-469 93. Zinger O, Zhao G, Schwartz Z et al (2005) Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26(14):1837-1847 94. Pazos L, Corengia P, Svoboda H (2010) Effect of surface treatments on the fatigue life of titanium for biomedical applications. J Mech Behav Biomed Mater 3(6):416-424 95. Zinger O, Anselme K, Denzer A et al (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25(14):2695-2711 96. Fasasi A, Mwenifumbo S, Rahbar N et al (2009) Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Mater Sci Eng C 29(1):5-13 97. Anselme K, Linez P, Bigerelle M et al (2000) The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21(15):1567-1577 98. Soboyejo W, Nemetski B, Allameh S et al (2002) Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res Part A 62(1):56-72 99. Chen J, Ulerich J, Abelev E et al (2009) An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces. Mater Sci Eng C 29(4):1442-1452 100. Chen J, Bly R, Saad M et al (2011) In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs. Mater Sci Eng C 31(5):826-832 101. Chen J, Mwenifumbo S, Langhammer C et al (2007) Cell/surface interactions and adhesion on Ti-6Al-4V:effects of surface texture. J Biomed Mater Res B Appl Biomater 82(2):360-373 102. Ricci JL, Alexander H (2001) Laser microtexturing of implant surfaces for enhanced tissue integration. In:Key engineering materials 2001 (pp 179-202). Trans Tech Publ 103. Hsiao WT, Chang HC, Nanci A et al (2016) Surface microtexturing of Ti-6Al-4V using an ultraviolet laser system. Mater Des 90:891-895 104. Soboyejo WO, Mercer C, Allameh S (2001) Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces. In:Key engineering materials 2001 (pp 203-230). Trans Tech Publ 105. Iordanova I, Antonov V, Gurkovsky S (2002) Changes of microstructure and mechanical properties of cold-rolled low carbon steel due to its surface treatment by Nd:glass pulsed laser. Surf Coat Technol 153(2):267-275 106. Montross CS, Wei T, Ye L et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys:a review. Int J Fatigue 24(10):1021-1036 107. Ruschau JJ, John R, Thompson SR et al (1999) Fatigue crack nucleation and growth rate behavior of laser shock peened titanium. Int J Fatigue 21:S199-S209 108. Vilar R (2016) Laser surface modification of biomaterials:techniques and applications. Woodhead Publishing, Cambridge 109. Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287-1300 110. Prakash C, Kansal HK, Pabla B et al (2016) Electric discharge machining-a potential choice for surface modification of metallic implants for orthopedic applications:a review. Proc Inst Mech Eng B J Eng Manuf 230(2):331-353 111. Peng PW, Ou KL, Lin HC et al (2010) Effect of electricaldischarging on formation of nanoporous biocompatible layer on titanium. J Alloy Compd 492(1):625-630 112. Lee WF, Yang TS, Wu YC et al (2013) Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response. J Exp Clin Med 5(3):92-96 113. Roy T, Choudhury D, Ghosh S et al (2015) Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram Int 41(1):681-690 114. Choudhury D, Walker R, Roy T et al (2013) Performance of honed surface profiles to artificial hip joints:an experimental investigation. Int J Precis Eng Manuf 14(10):1847-1853 115. Brehl D, Dow T (2008) Review of vibration-assisted machining. Precis Eng 32(3):153-172 116. Thoe T, Aspinwall D, Wise M (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239-255 117. Spur G, Holl SE (1996) Ultrasonic assisted grinding of ceramics. J Mater Process Technol 62(4):287-293 118. Dambatta YS, Sarhan AA, Sayuti M et al (2017) Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications-a review. Int J Adv Manuf Technol 92(9-12):3825-3858 119. Moriwaki T, Shamoto E (1991) Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann Manuf Technol 40(1):559-562 120. Klocke F (2000) Ultrasonic-assisted diamond turning of glass and steel. Ind Diamond Rev 229-239 121. Negishi N (2003) Elliptical vibration assisted machining with single crystal diamond tools. Dissertation, North Carolina State University 122. Gan J, Wang X, Zhou M et al (2003) Ultraprecision diamond turning of glass with ultrasonic vibration. Int J Adv Manuf Technol 21(12):952-955 123. Kim JD, Choi IH (1997) Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics. J Mater Process Technol 68(1):89-98 124. Xu S, Kuriyagawa T, Shimada K et al (2017) Recent advances in ultrasonic-assisted machining for the fabrication of micro/-nano-textured surfaces. Front Mech Eng 12(1):33-45 125. Lu X, Leng Y (2005) Electrochemical micromachining of titanium surfaces for biomedical applications. J Mater Process Technol 169(2):173-178 126. Madore C, Piotrowski O, Landolt D (1999) Through-mask electrochemical micromachining of titanium. J Electrochem Soc 146(7):2526-2532 127. Sjöström T, Su B (2011) Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte. Mater Lett 65(23):3489-3492 128. Saikko V (2017) Effect of contact area on the wear and friction of UHMWPE in circular translation pin-on-disk tests. J Tribol 139(6):061606 129. Turger A, Köhler J, Denkena B et al (2013) Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants. Biomed Eng Online 12(1):84 130. Bowsher J, Shelton J (2001) A hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions. Wear 250(1):167-179 131. Saikko V, Ahlroos T, Calonius O (2001) A three-axis knee wear simulator with ball-on-flat contact. Wear 249(3):310-315 132. Wilches L, Uribe J, Toro A (2008) Wear of materials used for artificial joints in total hip replacements. Wear 265(1):143-149 133. Lee JK, Maruthainar K, Wardle N et al (2009) Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee 16(4):269-274 134. Walker PS (1987) Biomechanics of total knee replacement. In:Bergmann G, Kölbel R, Rohlmann A (eds) Biomechanics:basic and applied research. Springer, Berlin, pp 19-31 |
[1] | Cheng-Wei Kang, Feng-Zhou Fang. State of the art of bioimplants manufacturing: part I[J]. Advances in Manufacturing, 2018, 6(1): 20-40. |
[2] | Bao-Rui Li, Yi Wang, Ke-Sheng Wang. A novel method for the evaluation of fashion product design based on data mining[J]. Advances in Manufacturing, 2017, 5(4): 370-376. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn