1. Yu ZW, Tang AT, He JJ et al (2018) Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy. Mater Charact 136:310-317 2. Cai Y, Wan L, Guo ZH et al (2017) Hot deformation characteristics of AZ80 magnesium alloy:Work hardening effect and processing parameter sensitivities. Mater Sci Eng A 687:113-122 3. Roostaei M, Shirdel M, Parsa MH et al (2016) Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy. Mater Charact 118:584-592 4. Tsao LC, Huang YT, Fan KH (2014) Flow stress behavior of AZ61 magnesium alloy during hot compression deformation. Mater Des 53(1):865-869 5. Das S, Barekar NS, Fakir OE et al (2015) Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting. Mater Sci Eng A 620:223-232 6. Jiang JJ, Song M, Yan HG et al (2016) Deformation induced dynamic recrystallization and precipitation strengthening in an Mg-Zn-Mn alloy processed by high strain rate rolling. Mater Charact 121:135-138 7. Zhou X, Wang M, Fu Y et al (2017) Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel. Mater Charact 124:182-191 8. Li HY, Li YH, Wang XF et al (2013) A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel. Mater Des 49:493-501 9. Li MQ, Xiong A, Li X (2006) An adaptive constitutive model of the Ti-6.29Al-2.71Mo-1.42Cr alloy in high-temperature deformation. J Mater Eng Perform 15(1):9-12 10. Duan YH, Ma LS, Qi HR et al (2017) Developed constitutive models, processing maps and microstructural evolution of PbMg-10Al-0.5B alloy. Mater Charact 129:353-366 11. He A, Xie GL, Zhang HL et al (2014) A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des 56:122-127 12. Momeni A, Ebrahimi GR, Jahazi M et al (2014) Microstructure evolution at the onset of discontinuous dynamic recrystallization:a physics-based model of subgrain critical size. J Alloy Compd 587:199-210 13. Liu LF, Ding HL (2009) Study of the plastic flow behaviors of AZ91 magnesium alloy during thermomechanical processes. J Alloy Compd 484(1-2):949-956 14. Sabokpa O, Zarei-Hanzaki A, Abedi HR et al (2012) Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy. Mater Des 39:390-396 15. Li HY, Wang XF, Wei DD et al (2012) A comparative study on modified Zerilli-Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel. Mater Sci Eng A 536:216-222 16. Grong Ø, Shercliff HR (2002) Microstructural modelling in metals processing. Prog Mater Sci 47(2):163-282 17. Vilamosa V, Clausen AH, Børvik T et al (2016) A physicallybased constitutive model applied to AA6082 aluminium alloy at large strains, high strain rates and elevated temperatures. Mater Des 103:391-405 18. Austin RA, Mcdowell DL (2011) A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int J Plast 27(1):1-24 19. Lin J, Liu Y, Farrugia DCJ et al (2005) Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling. Philos Mag 85(18):1967-1987 20. Standard practice for compression tests of metallic materials at elevated temperatures with conventional or rapid heating rates and strain rates, astm. https://www.astm.org/DATABASE.CART/STD_REFERENCE/E9.htm. Accessed 23 May 2018 21. Lin J, Dean TA (2005) Modelling of microstructure evolution in hot forming using unified constitutive equations. J Mater Process Technol 167(2):354-362 22. Xiao WC, Wang BY, Wu Y et al (2017) Constitutive modeling of flow behavior and microstructure evolution of AA7075 in hot tensile deformation. Mater Sci Eng A 712:704-713 23. Huo YM, Bai Q, Wang BY et al (2015) A new application of unified constitutive equations for cross wedge rolling of a highspeed railway axle steel. J Mater Process Technol 223(223):274-283 24. Zhou J, Wang BY, Huang MD (2014) Two constitutive descriptions of boron steel 22MnB5 at high temperature. Mater Des 63(2):738-748 25. Ji HC, Liu JP, Wang BY et al (2017) Microstructure evolution and constitutive equations for the high-temperature deformation of 5Cr21Mn9Ni4N heat-resistant steel. J Alloy Compd 693:674-687 26. Mohamed MS, Foster AD, Lin J et al (2012) Investigation of deformation and failure features in hot stamping of AA6082:experimentation and modelling. Int J Mach Tools Manuf 53(1):27-38 27. Garrett RP, Lin J, Dean TA (2005) An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys:experimentation and modelling. Int J Plast 21(8):1640-1657 28. Lin J, Liu Y (2003) A set of unified constitutive equations for modelling microstructure evolution in hot deformation. J Mater Process Technol 143(1):281-285 29. Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 111:548-574 30. Zhang J, Di H, Wang X et al (2013) Constitutive analysis of the hot deformation behavior of Fe-23Mn-2Al-0.2C twinning induced plasticity steel in consideration of strain. Mater Des 44:354-364 31. Li MG, Xiao SL, Xu LJ et al (2018) Mechanical properties, deformation behavior and microstructure evolution of Ti-43Al-6Nb-1Mo-1Cr alloys. Mater Charact 136:69-83 32. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Hot deformation and recrystallization of austenitic stainless steel:Part Ⅱ post-deformation recrystallization. Metall Mater Trans A 39(6):1371-1381 33. Poliak EI, Jonas JJ (2003) Initiation of dynamic recrystallization in constant strain rate hot deformation. Isij Int 43(5):684-691 34. Liu J, Cui Z, Ruan L (2011) A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater Sci Eng A 529(1):300-310 35. Wan ZP, Sun Y, Hu LX et al (2017) Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy. Mater Des 122:11-20 36. Han Y, Wu H, Zhang W et al (2015) Constitutive equation and dynamic recrystallization behavior of as-cast 254SMO superaustenitic stainless steel. Mater Des 69:230-240 37. Lin YC, Chen XM, Wen DX et al (2014) A physically-based constitutive model for a typical nickel-based superalloy. Comput Mater Sci 83(2):282-289 38. Tang XF, Wang BY, Zhang N et al (2015) Modeling of microstructural evolution and flow behavior of superalloy IN718 using physically based internal state variables. Rare Met. https://doi.org/10.1007/s12598-015-0602-6 39. Cao J, Lin J (2008) A study on formulation of objective functions for determining material models. Int J Mech Sci 50(2):193-204 40. Sun CY, Guo N, Fu MW et al (2016) Experimental investigation and modeling of ductile fracture behavior of TRIP780 steel in hot working conditions. Int J Mech Sci 110:108-115 41. Montheillet F, Thomas JP (2004) Dynamic recrystallization of low stacking fault energy metals. Metall Mater High Struct Effic 146:357-368 42. Jiang LY, Huang WJ, Zhang DF et al (2017) Effect of Sn on the microstructure evolution of AZ80 magnesium alloy during hot compression. J Alloy Compd 727:205-214 43. Raghunath BK, Raghukandan K, Karthikeyan R et al (2011) Flow stress modeling of AZ91 magnesium alloys at elevated temperature. J Alloy Compd 509(15):4992-4998 44. Su ZX, Wan L, Sun CY et al (2016) Hot deformation behavior of AZ80 magnesium alloy towards optimization of its hot workability. Mater Charact 122:90-97 45. Fatemi-Varzaneh SM, Zarei-Hanzaki A, Beladi H (2007) Dynamic recrystallization in AZ31 magnesium alloy. Mater Sci Eng A 456(1):52-57 46. Xu Y, Hu LX, Sun Y (2013) Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy. J Alloy Compd 580(8):262-269 |