1. Altintas Y, Tuysuz O, Habibi M et al (2018) Virtual compensation of deflection errors in ball end milling of flexible blades. CIRP Ann 67:365-368 2. Boulila A, Boujelbene M, Fekiri C et al (2019) Optimization of manufacturing complex-shaped gas turbine blades. Measurement 135:768-781 3. Li ZL, Zhu LM (2019) Compensation of deformation errors in five-axis flank milling of thin-walled parts via tool path optimization. Precis Eng 55:77-87 4. Zhao ZC, Fu YC, Liu X et al (2017) Measurement-based geometric reconstruction for milling turbine blade using free-form deformation. Measurement 101:19-27 5. Vessaz C, Tournier C, Munch C et al (2013) Design optimization of a 2D blade by means of milling tool path. CIRP J Manuf Sci Technol 6(3):157-166 6. Serizawa M, Matsumura T (2016) Control of helical blade machining in whirling. Proc Manuf 5:417-426 7. Yi J, Wang XB, Jiao L et al (2019) Research on deformation law and mechanism for milling micro thin wall with mixed boundaries of titanium alloy in mesoscale. Thin-Walled Struct 144:106329 8. Yang Y, Zhang WH, Ma YC et al (2016) Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces. Int J Mach Tools Manuf 109:36-48 9. Wang XJ, Song QH, Liu ZQ (2021) Dynamic model and stability prediction of thin-walled component milling with multi-modes coupling effect. J Mater Process Technol 288:116869 10. Ren S, Long XH, Meng G (2018) Dynamics and stability of milling thin walled pocket structure. J Sound Vib 429:325-347 11. Zhang Z, Li HG, Liu XB et al (2018) Chatter mitigation for the milling of thin-walled workpiece. Int J Mech Sci 138-139:262-271 12. Dun YC, Zhu LD, Wang SH (2020) Multi-modal method for chatter stability prediction and control in milling of thin-walled workpiece. Appl Math Model 80:602-624 13. Nam S, Hayasaka T, Jung H et al (2020) Proposal of novel chatter stability indices of spindle speed variation based on its chatter growth characteristics. Precis Eng 62:121-133 14. Koenigsberger F, Tlusty J (1967) Machine tool structure-vol. I:stability against chatter. Pergamon Press, Oxford 15. Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. Engineer 205(199-203):238-239 16. Balachandran B, Zhao MX (2000) A mechanics based model for study of dynamics of milling operations. Meccanica 35(2):89-109 17. Balachandran B, Gilsinn D (2005) Nonlinear oscillations of milling. Math Comput Model Dyn Syst 11:273-290 18. Balachandran B, Kalmár-Nagy T, Gilsinn D (2009) Delay differential equations:recent advances and new directions. Springer, New York 19. Altintas Y, Stepan G, Merdol D et al (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1:35-44 20. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61:117-141 21. Yue CX, Gao HN, Liu XL et al (2019) A review of chatter vibration research in milling. Chin J Aeronaut 32(2):215-242 22. Yang WA, Huang C, Cai XL et al (2020) Effective and fast prediction of milling stability using a precise integration-based third-order full-discretization method. Int J Adv Manuf Technol 106:4477-4498 23. Insperger T, Stépán G (2011) Semi-discretization for time-delayed systems:stability and engineering application. Springer, Berlin 24. Grossi N, Sallese L, Montevecchi F et al (2016) Speed-varying machine tool dynamics identification through chatter detection and receptance coupling. Proc CIRP 55:77-82 25. özşahin O, özgüven HN, Budak E (2010) Analysis and compensation of mass loading effect of accelerometers on tool point FRF measurements for chatter stability predictions. Int J Mach Tools Manuf 50:585-589 26. Budak E, Tunç LT, Alan S et al (2012) Prediction of workpiece dynamics and its effects on chatter stability in milling. CIRP Ann Manuf Technol 61:339-342 27. Sultan C (2010) Proportional damping approximation using the energy gain and simultaneous perturbation stochastic approximation. Mech Syst Signal Process 24:2210-2224 28. Hajdu D, Insperger T, Stepan G (2015) The effect of non-symmemetric FRF on machining:a case study. V006T10A062 29. Reith MJ, Stepan G (2017) Effect of non-proportional damping on the dynamics and stability of multi-cutter turning systems. Int J Mach Tools Manuf 117:23-30 30. Kerschen G, Worden K, Vakakis AF et al (2006) Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Process 20(3):505-592 31. Ewins DJ (2000) Modal testing:theory, practice and application, 2nd edn. Research Studies Press, Baldock 32. Han LY, Liu RL, Liu XF et al (2020) Theoretical modeling and chatter prediction for the whirling process of airfoil blades with consideration of asymmetric FRF and material removal. Int J Adv Manuf Technol 106:2613-2628 33. Zhao ZC, Xu JH, Fu YC et al (2017) An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation. Chin J Aeronaut 31(1):178-186 34. Huang T, Zhang XM, Ding H (2017) Tool orientation optimization for reduction of vibration and deformation in ball-end milling of thin-walled impeller blades. Procedia CIRP 58:210-215 35. Totis G, Insperger T, Sortino M et al (2019) Symmetry breaking in milling dynamics. Int J Mach Tools Manuf 139:37-59 |