1. Keremes JJ, Haynes JD, Gao Y et al (2013) Laser configuration for additive manufacturing. In US Patent Application: US 20130112672 A1 2. Masoomi M, Thompson SM, Shamsaei N et al (2017) Laser powder bed fusion of Ti-6Al-4V parts: thermal modeling and mechanical implications. Int J Mach Tools Manuf 118: 73–90 3. Keicher DM, Miller WD (2001) Multiple beams and nozzles to increase deposition rate. In US Patent: US6268584 4. Masoomi M, Thompson SM, Shamsaei N (2017) Quality part production via multi-laser additive manufacturing. Manuf Lett 13: 15–20 5. Zhang CC, Zhu HH, Hu ZH et al (2019) A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties. Mater Sci Eng A 746: 416–423 6. Heeling T, Zimmermann L, Wegener K (2016) Multi-beam strategies for the optimization of the selective laser melting process. In: proceedings of the 27th annual international solid freeform fabrication symposium, The University of Texas at Austin, US 7. Eberle G, Dold C, Wegener K (2013) Building a vector model representation of a two-axis laser scanhead using numerical analysis for simulation purposes. Int J Model Identif Control 20(3): 199–207 8. Godineau K, Lavernhe S, Tournier C (2017) Opto-mechanical modelling of an additive manufacturing laser scanning head including assembly defects. In: joint special interest groupmeeting between EUSPEN and ASPE: dimensional accuracy and surface finish in additive manufacturing, Leuven, Belgium, 2017 9. Mayer JR, Parker GA (1994) A portable instrument for 3-D dynamic robot measurements using triangulation and laser tracking. IEEE Trans Robot Autom 10(4): 504–516 10. Li G, Wang Y, Han J et al (2014) Geometry algorithm of galvanometer system correction for rapid prototyping of machine parts. Mach Tool Hydraul 42(19): 28–30 11. Han WP, Meng W, Li YX et al (2011) Error analysis and correction methods of dual galvanometer scanning. Electro-Opt Technol Appl 26(4): 14–18 12. William II (2014) Effective calibration and implementation of galvanometer scanners as applied to direct metal laser sintering. In: Proceedings of the ASPE 2014 spring topical meeting ASPE 2014 spring topical meeting: dimensional accuracy and surface finish in additive manufacturing. American Society for Precision Engineering, Berkeley, CA 13. Lu Y, Badarinath R, Lehtihet EA et al (2017) Experimental sampling of the Z-axis error and laser positioning error of an EOSINT M280 DMLS machine. Addit Manuf 21(1): 501–516 14. Delgado MAO, Lasagni AF (2016) Reducing field distortion for galvanometer scanning system using a vision system. Opt Lasers Eng 86: 106–114 15. Yeung H, Lane BM, Donmez MA et al (2020) In-situ calibration of laser/galvo scanning system using dimensional reference artefacts. CIRP Ann Manuf Technol 69(1): 441–444 16. Chen G, Zhang Y, Tian P (2020) An error compensation method based on machine vision for laser-processing systems with galvanometers. Appl Phys B 127(1): 1–9 17. Manakov A, Seidel HP, Ihrke I (2011) A mathematical model and calibration procedure for galvanometric laser scanning systems. In: Eisert P, Polthier K, Hornegger J (eds) Vision, modeling, and visualization (2011), Eurographics Association, pp 207–214 18. Mnerie C, Preitl S, Duma VF (2013) Mathematical model of a galvanometer-based scanner: simulations and experiments. In: Modeling Aspects in Optical Metrology IV, SPIE, 2013. https://doi.org/10.1117/12.2020462 19. Chen MF, Chen YP (2007) Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines. Int J Mach Tools Manuf 47(7/8): 1114–1124 20. Xie J, Huang SH, Duan ZC et al (2005) Correction of the image distortion for laser galvanometric scanning system. Opt Laser Technol 37(4): 305–311 21. Godineau K, Lavernhe S, Tournier C (2019) Calibration of galvanometric scan heads for additive manufacturing with machine assembly defects consideration. Addit Manuf 26: 250–257 22. Matsuka D, Tanaka T, Iwasaki M (2016) Thermal demagnetization compensation for fast and precise positioning in galvanometer scanners. IEEE Trans Ind Electron 63(9): 5514–5522 23. Zaeh M, Pieczona S (2018) Adaptive inverse control of a galvanometer scanner considering the structural dynamic behavior. CIRP Ann 67(1): 385–388 24. Blais F (1988) Control of low inertia galvanometers for high precision laser scanning systems. Opt Eng 27(2): 104–110 25. Seki K, Kannami H, Iwasaki M et al (2010) Application of self-sensing actuation using piezoelectric element for vibration suppression of galvanometric mirror. In: 2010 IEEE/ASME international conference on advanced intelligent mechatronics, IEEE, 2010 26. Hu C, Wang X, Song B (2020) High-performance position-sensitive detector based on the lateral photoelectrical effect of two-dimensional materials. Light Sci Appl 9(1): 1–9 27. Zhang WG, Guo W, Zhang CW et al (2019) An improved method for spot position detection of a laser tracking and positioning system based on a four-quadrant detector. Sensors 19(21): 1–18 28. Lasemi A, Xue D, Gu P (2016) Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar. Meas Sci Technol 27(5): 1–17 29. Aylward RP (2003) Advanced galvanometer-based optical scanner design. Sens Rev 23: 216–222 30. Mnerie C, Preitl S, Duma VF (2017) Galvanometer-based scanners: mathematical model and alternative control structures for improved dynamics and immunity to disturbances. Int J Struct Stab Dyn 17(5): 1740006. https://doi.org/10.1142/S0219455417400065 31. Yeung H, Lane BM, Donmez MA et al (2018) Implementation of advanced laser control strategies for powder bed fusion systems. Procedia Manuf 26: 871–879 32. Moylan S, Slotwinski J, Cooke A et al (2014) An additive manufacturing test artifact. J Res Natl Inst Stand Technol 119: 429–459 33. Moylan S, Cooke A, Jurrens K et al (2012) A review of test artifacts for additive manufacturing. Report No. NISTIR, 7858, National Institute of Standards and Technology (NIST), Gaithersburg, MD. https://doi.org/10.6028/NIST.IR.7858 34. Lo YL, Liu BY, Tran HC (2019) Optimized hatch space selection in double-scanning track selective laser melting process. Int J Adv Manuf Technol 105(7/8): 2989–3006 35. Norliza A, Ahmad MH, Robiah A (2006) A comparative study on some methods for handling multicollinearity problems. Mathematika 22(2): 109–119 36. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. In: Biocomputing 2000, World 726 Scientific, pp 455–466 |