1. Jouhara H, Chauhan A, Nannou T et al (2017) Heat pipe based systems—advances and applications. Energy 128: 729–754 2. Lee S, Lee J, Hwang H et al (2018) Layer-by-layer assembled carbon nanotube-polyethyleneimine coatings inside copper-sintered heat pipes for enhanced thermal performance. Carbon 140: 521–532 3. Xiang J, Zheng H, Wang Y et al (2019) Numerical simulation, machining and testing of a phase change heat sink for high power LEDs. Materials 12(13): 2193. https://doi.org/10.3390/ma12132193 4. Chan CW, Siqueiros E, Ling-Chin J et al (2015) Heat utilisation technologies: a critical review of heat pipes. Renew Sust Energ Rev 50: 615–627 5. Brennan PJ, Kroliczek EJ (1979) Heat pipe design handbook: Volume II. NTIS, Publication no. N81-70113, Maryland, USA 6. Hoa C, Demolder BT, Alexandre A (2003) Roadmap for developing heat pipes for ALCATEL SPACE's satellites. Appl Therm Eng 23(9): 1099–1108 7. Li H, Wang X, Liu Z et al (2015) Experimental investigation on the sintered wick of the anti-gravity loop-shaped heat pipe. Exp Therm Fluid Sci 68: 689–696 8. Ngo TD, Kashani A, Imbalzano G et al (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143: 172–196 9. Jared BH, Aguilo MA, Beghini LL et al (2017) Additive manufacturing: toward holistic design. Scr Mater 135: 141–147 10. Parimi LL, Ravi GA, Clark D et al (2014) Microstructural and texture development in direct laser fabricated IN718. Mater Charact 89: 102–111 11. Mazur M, Leary M, McMillan M et al (2017) Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). Laser Additive Manufacturing, Woodhead Publishing, pp 119–161 12. Leary M, Mazur M, Elambasseril J et al (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98: 344–357 13. Qiu C, Yue S, Adkins NJE et al (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mat Sci Eng A 628: 188–197 14. Huang Y, Xue Y, Wang X et al (2017) Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures. MaterLett 202: 55–58 15. Zhu S, Ma L, Wang B et al (2018) Lattice materials composed by curved struts exhibit adjustable macroscopic stress-strain curves. Mater Today Commun 14: 273–281 16. Li S, Hassanin H, Attallah MM et al (2016) The development of TiNi-based negative Poisson's ratio structure using selective laser melting. Acta Mater 105: 75–83 17. Essa HHK, Attallah MM, Adkins NJ et al (2017) Development and testing of an additively manufactured Monolithic catalyst bed for HTP thruster applications. Appl Catal A-Gen 542: 125–135 18. Ameli M, Agnew B, Leung PS et al (2013) A novel method for manufacturing sintered aluminium heat pipes (SAHP). Appl Therm Eng 52(2): 498–504 19. Ibrahim OT, Monroe JG, Thompson SM et al (2017) An investigation of a multi-layered oscillating heat pipe additively manufactured from Ti-6Al-4V powder. Int J Heat Mass Transf 108: 1036–1047 20. Thompson SM, Aspin ZS, Shamsaei N et al (2015) Additive manufacturing of heat exchangers: a case study on a multi-layered Ti-6Al-4V oscillating heat pipe. Addit Manuf 8: 163–174 21. Jafari D, Wits WW, Geurts BJ (2020) Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications. Appl Therm Eng 168: 114890. https://doi.org/10.1016/j.applthermaleng.2019.114890 22. Tan C, Li S, Essa K et al (2019) Laser powder bed fusion of Ti-rich TiNi lattice structures: process optimisation, geometrical integrity, and phase transformations. Int J Mac Tool Manuf 141: 19–29 23. Yadroitsev I, Gusarov A, Yadroitsava I et al (2010) Single track formation in selective laser melting of metal powders. J Mater Process Tech 210(12): 1624–1631 24. Li C, Guo YB, Zhao JB (2017) Interfacial phenomena and characteristics between the deposited material and substrate in selective laser melting Inconel 625. J Mater Process Tech 243: 269–281 25. Dilip JJS, Zhang S, Teng C et al (2017) Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog Addit Manuf 2(3): 157–167 26. Aydin S, Ali KY, Rashad S et al (2017) Three-dimensional microstructured lattices for oil sensing. Energy Fuels 31(3): 2524–2529 27. Essa K, Sabouri A, Butt H et al (2018) Laser additive manufacturing of 3D meshes for optical applications. PLoS One 13(2): e0192389. https://doi.org/10.1371/journal.pone.0192389 28. Elsayed M, Ghazy M, Youssef YM et al (2018) Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyp J 25(3): 433–447 29. Valdez M, Kozuch C, Faierson EJ et al (2017) Induced porosity in super alloy 718 through the laser additive manufacturing process: microstructure and mechanical properties. J Alloys Compd 725: 757–764 30. Salem H, Carter LN, Attallah MM et al (2019) Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting. Mat Sci Eng A 767: 138387. https://doi.org/10.1016/j.msea.2019.138387 31. Liu Y, Zhang J, Pang Z (2018) Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel. Opt Laser Technol 98: 23–32 32. Searle M, Black J, Straub D et al (2020) Heat transfer coefficients of additively manufactured tubes with internal pin fins for supercritical carbon dioxide cycle recuperators. Appl Therm Eng 181: 116030. https://doi.org/10.1016/j.applthermaleng.2020.116030 33. Zhang X, Tiwari R, Shooshtari AH et al (2018) An additively manufactured metallic manifold-microchannel heat exchanger for high temperature applications. Appl Therm Eng 143: 899–908 34. Leung CLA, Marussi S, Atwood RC et al (2018) In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun 9(1): 1355. https://doi.org/10.1038/s41467-018-03734-7 35. Bertoli US, Wolfer AJ, Matthews MJ et al (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113: 331–340 36. Suman B (2009) Microgrooved heat pipe. In: Irvine TF, Hartnett JP (eds) Advances in heat transfer. Elsevier, pp 1–80 37. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Tech 211(2): 275–284 38. Johnson L, Mahmoudi M, Zhang B et al (2019) Assessing printability maps in additive manufacturing of metal alloys. Acta Mater 176: 199–210 39. Kusuma C (2016) The effect of laser power and scan speed on melt pool characteristics of pure titanium and Ti-6Al-4V alloy for selective laser melting. Dissertation, Wright State University, p 128 40. Carter LN, Wang X, Read N et al (2016) Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater Sci Tech 32(7): 657–661 41. Li R, Liu J, Shi Y et al (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Tech 59(9): 1025–1035 42. Bidare P, Bitharas I, Ward RM et al (2018) Fluid and particle dynamics in laser powder bed fusion. Acta Mater 142: 107–120 43. Kong D, Zhang Y, Liu S (2019) Convective heat transfer enhancement by novel honeycomb-core in sandwich panel exchanger fabricated by additive manufacturing. Appl Therm Eng 163: 114408. https://doi.org/10.1016/j.applthermaleng.2019.114408 44. Gu D, Yang Y, Xi L et al (2019) Laser absorption behavior of randomly packed powder-bed during selective laser melting of SiC and TiB2 reinforced Al matrix composites. Opt Laser Technol 119: 105600. https://doi.org/10.1016/j.optlastec.2019.105600 45. Boley CD, Khairallah SA, Rubenchik AM (2015) Calculation of laser absorption by metal powders in additive manufacturing. Appl Opt 54(9): 2477–2482 46. Li Y, He HF, Zeng ZX (2013) Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick. Appl Therm Eng 50(1): 342–351 47. Jasper WJ, Anand N (2019) A generalized variational approach for predicting contact angles of sessile nano-droplets on both flat and curved surfaces. J Mol Liq 281: 196–203 |