1 Gou J, Liu H (2017) Hammerstein system identification with quantised inputs and quantised output observations. IET Control Theory A 11(4):593-599 2 Zhang J, Chin KS, Lawrynczuk M (2018) Nonlinear model predictive control based on piecewise linear Hammerstein models. Nonlinear Dyn 92(3):1001-1021 3 Mu B, Chen HF, Wang LY et al (2017) Recursive identification of Hammerstein systems: convergence rate and asymptotic normality. IEEE Trans Autom Control 62(7):3277-3292 4 Jia L, Li X, Chiu MS (2016) Correlation analysis based MIMO neuro-fuzzy Hammerstein model with noises. J Process Contr 41:76-91 5 Cheng CM, Peng ZK, Zhang WM (2016) A novel approach for identification of cascade of Hammerstein model. Nonlinear Dyn 86(1):513-522 6 Li F, Chen L, Wo S et al (2020) Modeling and parameter learning for the Hammerstein-Wiener model with disturbance. Meas Control 53(5/6):971-982 7 Zhang B, Mao Z (2017) Bias compensation principle based recursive least squares identification method for Hammerstein nonlinear models. J Franklin Inst 354(3):1340-1355 8 Hagenblad A, Ljung J, Wills A (2008) Maximum likelihood identification of Wiener models. Automatica 44(11):2697-2705 9 Kazemi M, Arefi MM (2017) A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA T 67:382-388 10 Schoukens M, Rolain Y (2012) Parametric identification of parallel Wiener models. IEEE Trans Instrum Meas 61(10):2825-2832 11 Li J, Hua C, Tang Y et al (2014) Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems. Appl Math Lett 33:40-45 12 Zhou L, Li X, Pan F (2015) Gradient-based iterative identification for Wiener nonlinear models with non-uniform sampling. Nonlinear Dyn 76(1):627-634 13 Quachio R, Garcia C (2019) MPC relevant identification method for Hammerstein and Wiener models. J Process Contr 80:78-88 14 Bloemen HHJ, Chou CT, van den Boom TJJ et al (2001) Wiener model identification and predictive control for dual composition control of a distillation column. J Process Contr 11(6):601-620 15 Al-Dhaifallah M, Nisar KS, Agarwal P et al (2017) Modeling and identification of heat exchanger process using least squares support vector machines. Therm Sci 21(6):2859-2869 16 George SJ, Kamat S, Madhavan KP (2007) Modeling of pH process using wave net based Hammerstein model. J Process Contr 17(6):551-561 17 Li F, Jia L, Peng D et al (2017) Neuro-fuzzy based identification method for Hammerstein output error model with colored noise. Neurocomputing 244:90-101 18 Luo SX, Song YD (2018) Data-driven predictive control of Hammerstein-Wiener models based on subspace identification. Inform Sciences 422:447-461 19 Yu F, Mao Z, Jia M et al (2014) Recursive parameter identification of Hammerstein-Wiener systems with measurement noise. Signal Process 105:137-147 20 Jeng JC, Lin YW (2018) Data-driven nonlinear control design using virtual reference feedback tuning based on block-oriented modeling of nonlinear models. Ind Eng Chem Res 57(22):7583-7599 21 Li G, Wen C, Zheng WX et al (2011) Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines. IEEE T Signal Process 59(5):2146-2159 22 Ding B, Ping X (2012) Dynamic output feedback model predictive control for nonlinear models represented by Hammerstein-Wiener model. J Process Contr 22(9):1773-1784 23 Wills A, Schon TB, Ljung L et al (2013) Identification of Hammerstein-Wiener models. Automatica 49(1):70-81 24 Zhu Y (2002) Estimation of an N-L-N Hammerstein-Wiener model. Automatica 38(9):1607-1614 25 Voros J (2015) Iterative identification of nonlinear dynamic models with output backlash using three-block cascade models. Nonlinear Dyn 79(3):2187-2195 26 Allafi W, Zajic I, Uddin K et al (2017) Parameter identification of the fractional-order Hammerstein-Wiener model using simplified refined instrumental variable fractional-order continuous time. IET Control Theory A 11(15):2591-2598 27 Bai EW (2002) A blind approach to the Hammerstein-Wiener model identification. Automatica 38(6):967-979 28 Brouri A, Kadi L, Slassi S (2017) Frequency identification of Hammerstein-Wiener models with backlash input nonlinearity. Int J Control Autom Syst 15(5):2222-2232 29 Li F, Yao K, Li B et al (2021) A novel learning algorithm of the neuro-fuzzy based Hammerstein-Wiener model corrupted by process noise. J Frankl Inst 358(3):2115-2137 30 Sung SW, Je CH, Lee J et al (2008) Improved system identification method for Hammerstein-Wiener processes. Ind Eng Chem Res 25(4):631-636 31 Wang DQ, Ding F (2012) Hierarchical least squares estimation algorithm for Hammerstein-Wiener models. IEEE Signal Proc Lett 19(2):825-828 32 Ward MacArthur J (2012) A new approach for nonlinear process identification using orthonormal bases and ordinal splines. J Process Contr 22(2):375-389 33 Yu F, Mao Z, Yuan P et al (2017) Recursive parameter identification for Hammerstein-Wiener models using modified EKF algorithm. ISA T 70:104-115 34 Wang D, Ding F (2008) Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX models. Comput Math Appl 56:3157-3164 35 Wang J, Chen T, Wang L (2009) A blind approach to identification of Hammerstein-Wiener models corrupted by nonlinear-process noise. In: Processing of the 7th Asian control conference, Hong Kong, China, 24-29 August, pp 1340-1345 36 Ni B, Gilson M, Garnier H (2013) Refined instrumental variable method for Hammerstein-Wiener continuous-time model identification. IET Control Theory A7(9):1276-1286 37 Wang Z, Wang Y, Ji Z (2017) A novel two-stage estimation algorithm for nonlinear Hammerstein-Wiener models from noisy input and output data. J Frankl Inst 354:1937-1944 38 Lang ZQ (1994) On identification of the controlled plants described by the Hammerstein models. IEEE Trans Automat Contr 39(3):569-573 39 Navarro-Almanza R, Sanchez MA, Castro JR et al (2022) Interpretable Mamdani neuro-fuzzy model through context awareness and linguistic adaptation. Expert Syst Appl 189:116098. https://doi.org/10.1016/j.eswa.2021.116098 40 Soto J, Castillo O, Melin P et al (2019) A new approach to multiple time series prediction using MIMO fuzzy aggregation models with modular neural networks. Int J Fuzzy Syst 21(5):1629-1648 41 Soto J, Melin P, Castillo O (2018) A new approach for time series prediction using ensembles of IT2FNN models with optimization of fuzzy integrators. Int J Fuzzy Syst 20(3):701-728 42 Castillo O, Castro JR, Melin P et al (2014) Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput 18(6):1213-1224 43 Li J, Zong T, Lu G (2021) Parameter identification of Hammerstein-Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA T. https://doi.org/10.1016/j.isatra.2021.03.021 44 Abouda SE, Abid DBH, Elloumi M et al (2019) Identification of nonlinear dynamic systems using fuzzy Hammerstein-Wiener systems. In: The 19th international conference on sciences and techniques of automatic control and computer engineering (STA), 24-26 March, Sousse, Tunisia, https://doi.org/10.1109/STA.2019.8717218 45 Li F, Jia L, Peng D (2017) Identification method of neuro-fuzzy-based Hammerstein model with coloured noise. IET Control Theory A 11(17):3026-3037 46 Enqvist M, Ljung L (2005) Linear approximations of nonlinear FIR models for separable input processes. Automatica 41(3):459-473 47 Ding F, Wang F, Xu L et al (2017) Parameter identification for pseudo-linear models using the auxiliary model and the decomposition technique. IET Control Theory A 11(13):390-400 48 Ljung L (1999) Model identification: theory for the user, 2nd edn. Prentice Hall, Englewood Cliffs 49 Ding F, Gu Y (2012) Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems. Int J Comput Math 89(15):2019-2028 50 Wang Y, Ding F (2016) Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener models using the data filtering. Nonlinear Dyn 84(2):1045-1053 51 Mohammadzadeh A, Rathinasamy S (2020) Energy management in photovoltaic battery hybrid systems: a novel type-2 fuzzy control. Int J Hydrogen Energ 45(41):20970-20982 52 Mosavi A, Qasem SN, Shokri M et al (2020) Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics, variable irradiation and temperature. Electronics 9(9):1455. https://doi.org/10.3390/electronics9091455 |