1. Lazoglu I, Manav C, Murtezaoglu Y (2009) Tool path optimization for free form surface machining. CIRP Ann Manuf Technol 58:101-104 2. Zhang JY, Yao CF, Cui MC et al (2021) Three-dimensional modeling and reconstructive change of residual stress during machining process of milling, polishing, heat treatment, vibratory finishing, and shot peening of fan blade. Adv Manuf 9:430-445 3. Toubhans B, Fromentin G, Viprey F et al (2020) Machinability of inconel 718 during turning: cutting force model considering tool wear, influence on surface integrity. J Mater Process Technol 285:116809. https://doi.org/10.1016/j.jmatprotec.2020.116809 4. Lotfi M, Amini S, Al-Awady IY (2018) 3D numerical analysis of drilling process: heat, wear, and built-up edge. Adv Manuf 6:204-214 5. Gavalda DO, Garcia LG, Liao Z et al (2019) The new challenges of machining ceramic matrix composites (CMCs): review of surface integrity. Int J Mach Tools Manuf 139:24-36 6. Liu XF, Wang WH, Jiang RS et al (2020) Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB2/7050Al metal matrix composites. Adv Manuf 8:252-264 7. Kumar R, Sahoo AK, Mishra PC et al (2018) Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation. Adv Manuf 6:52-70 8. Kalantari O, Jafarian F, Fallah MM (2021) Comparative investigation of surface integrity in laser assisted and conventional machining of Ti-6Al-4V alloy. J Manuf Process 62:90-98 9. Hlaváč LM, Bańkowski D, Krajcarz D et al (2021) Abrasive waterjet (AWJ) forces—indicator of cutting system malfunction. Materials (Basel) 14:1683. https://doi.org/10.3390/ma14071683 10. Spadło S, Bańkowski D, Młynarczyk P et al (2021) Influence of local temperature changes on the material microstructure in abrasive water jet machining (AWJM). Materials (Basel) 14:5399. https://doi.org/10.3390/ma14185399 11. Torrubia PL, Billingham J, Axinte DA (2016) Stochastic simplified modelling of abrasive waterjet footprints. Proc R Soc A Math Phys Eng Sci 472:20150836. https://doi.org/10.1098/rspa.2015.0836 12. Folkes J (2009) Waterjet-an innovative tool for manufacturing. J Mater Process Technol 209:6181-6189 13. Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49:306-316 14. Kong MC, Axinte DA (2012) Capability of advanced abrasive waterjet machining and its applications. Appl Mech Mater 110/116:1674-1682 15. Li M, Huang M, Chen Y et al (2019) Effects of processing parameters on kerf characteristics and surface integrity following abrasive waterjet slotting of Ti6Al4V/CFRP stacks. J Manuf Process 42:82-95 16. Zhu YS, Wu J, Lu WZ et al (2022) Surface formation mechanics and its microstructural characteristics of AAJP of aluminum alloy by using amino thermosetting plastic abrasive. Int J Precis Eng Manuf Green Technol 9:59-72 17. Karmiris-Obratański P, Karkalos NE, Kudelski R et al (2021) On the effect of multiple passes on kerf characteristics and efficiency of abrasive waterjet cutting. Metals (Basel) 11:74. https://doi.org/10.3390/met11010074 18. Pahuja R, Ramulu M (2019) Study of surface topography in abrasive water jet machining of carbon foam and morphological characterization using discrete wavelet transform. J Mater Process Technol 273:116249. https://doi.org/10.1016/j.jmatprotec.2019.05.030 19. Kuo C, Yang J, Wen J (2020) Wear behaviour and sustainability of coated abrasives in grinding of aluminium alloy using minimum quantity lubrication. Int J Precis Eng Manuf Green Technol 7:23-34 20. Thongkaew K, Wang J, Li W (2019) An investigation of the hole machining processes on woven carbon-fiber reinforced polymers (CFRPs) using abrasive waterjets. Mach Sci Technol 23:19-38 21. Kovacevic R, Fang M (1994) Modeling of the influence of the abrasive waterjet cutting parameters on the depth of cut based on fuzzy rules. Int J Mach Tools Manuf 34:55-72 22. Axinte D, Billingham J, Guillerna AB (2017) New models for energy beam machining enable accurate generation of free forms. Sci Adv 3:1-8 23. Bilbao-Guillerna A, Axinte DA, Billingham J et al (2017) Waterjet and laser etching: the nonlinear inverse problem. R Soc Open Sci 4:161031. https://doi.org/10.1098/rsos.161031 24. Ranjan P, Chaubey P, Suresh P et al (2022) Current research aspects and trends in abrasive water jet machining: a review. Adv Mech Eng Technol 2022:193-198 25. Natarajan Y, Murugesan PK, Mohan M et al (2020) Abrasive water jet machining process: a state of art of review. J Manuf Process 49:271-322 26. Hlaváč LM (2021) Revised model of abrasive water jet cutting for industrial use. Materials (Basel) 14:4032. https://doi.org/10.3390/ma14144032 27. Karmiris-Obratański P, Karkalos NE, Kudelski R et al (2020) Experimental study on the correlation of cutting head vibrations and kerf characteristics during abrasive waterjet cutting of titanium alloy. Procedia CIRP 101:226-229 28. Axinte DA, Srinivasu DS, Billingham J et al (2010) Geometrical modelling of abrasive waterjet footprints: a study for 90° jet impact angle. CIRP Ann Manuf Technol 59:341-346 29. Yuvaraj N, Kumar MP (2017) Investigation of process parameters influence in abrasive water jet cutting of D2 steel. Mater Manuf Process 32:151-161 30. Billingham J, Miron CB, Axinte DA et al (2013) Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part II—overlapped single and multiple straight paths. Int J Mach Tools Manuf 68:30-39 31. Vikram G, Ramesh BN (2002) Modelling and analysis of abrasive water jet cut surface topography. Int J Mach Tools Manuf 42:1345-1354 32. Hlaváč LM, Hlaváčová IM, Arleo F et al (2018) Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precis Eng 53:194-202 33. Zhang Y, Zhao M, Ye P et al (2019) A G4 continuous B-spline transition algorithm for CNC machining with jerk-smooth feedrate scheduling along linear segments. CAD Comput Aided Des 115:231-243 34. Tang L, Wang H, Liu Z et al (2021) A real-time quadrotor trajectory planning framework based on B-spline and nonuniform kinodynamic search. J F Robot 38:452-475 Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of |