1. Chen X, Wang J, Zhao K et al (2022) Electric vehicles body frame structure design method:an approach to design electric vehicle body structure based on battery arrangement. Proc Inst Mech Eng Part D J Automob Eng 236(9):2025-2042 2. Mallick PK (2020) Materials, design and manufacturing for lightweight vehicles. Woodhead Publishing, Cambridge 3. Qiu D, Wang Y, Hua W et al (2023) Reinforcement learning for electric vehicle applications in power systems:a critical review. Renew Sust Energy Rev 173:113052. https://doi.org/10.1016/j.rser.2022.113052 4. Ahmed M, Zheng Y, Amine A et al (2021) The role of artificial intelligence in the mass adoption of electric vehicles. Joule 5(9):2296-2322 5. Altun F, Tekin SA, Gürel S et al (2019) Design and optimization of electric cars:a review of technological advances. In:The 8th international conference on renewable energy research and applications (ICRERA). IEEE, Brasov Romania 6. Li Q, Wu L, Chen T et al (2021) Multi-objective optimization design of B-pillar and rocker sub-systems of battery electric vehicle. Struct Multidisc Optim 64:3999-4023 7. Jeong MH, Park GJ (2023) Nonlinear dynamic structural optimization of electric vehicles considering multiple safety tests. Int J Auto Tech 24(2):573-583 8. Wang S, Wang D (2021) Crashworthiness-based multi-objective integrated optimization of electric vehicle chassis frame. Arch Civ Mech Eng 21(3):103. https://doi.org/10.1007/s43452-021-00242-2 9. De Gaetano G, Mundo D, Maletta C et al (2015) Multi-objective optimization of a vehicle body by combining gradient-based methods and vehicle concept modeling. Case Stud Mech Syst Signal Process 1:1-7 10. Stabile P, Ballo F, Gobbi M et al (2021) Multi-objective structural optimization of vehicle wheels. In:International design engineering technical conferences and computers and information in engineering conference. ASME, Missouri 11. De S, Singh K, Seo J et al (2019) Structural design and optimization of commercial vehicle hassis under multiple load cases and constraints. In:IAA Scitech Forum. San Diego 12. Bertolini A, Martins MS, Vieira SM et al (2022) Power output optimization of electric vehicles smart charging hubs using deep reinforcement learning. Expert Syst Appl 201:116995. https://doi.org/10.1016/j.eswa.2022.116995 13. Ryberg AB, Bäckryd RD, Nilsson L (2015) A metamodel-based multidisciplinary design optimization process for automotive structures. Eng Comput 31:711-728 14. Qin H, Guo Y, Liu Z et al (2018) Shape optimization of automotive body frame using an improved genetic algorithm optimizer. Adv Eng Softw 121:235-249 15. Shi K, Ruan Z, Jiang Z et al (2018) Improved plant growth simulation and genetic hybrid algorithm (PGSA-GA) and its structural optimization. Eng Comput 35(1):268-286 16. Chen R, Yang B, Li S et al (2020) A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem. Comput Ind Eng 149:106778. https://doi.org/10.1016/j.cie.2020.106778 17. Kimbrough SO, Koehler GJ, Lu M et al (2008) On a feasible-infeasible two-population (fi-2pop) genetic algorithm for constrained optimization:distance tracing and no free lunch. Eur J Oper Res 190(2):310-327 18. Köksal AE, Li Z, Veeravalli B et al (2022) Reinforcement learning-enabled genetic algorithm for school bus scheduling. J Intell Transp S 26(3):269-283 19. Karafotias G, Smit SK, Eiben AE (2012) A generic approach to parameter control. In:European conference on the applications of evolutionary computation. Springer, Berlin Heidelberg 20. Karafotias G, Hoogendoorn M, EibenÁE (2014) Parameter control in evolutionary algorithms:trends and challenges. IEEE T Evolut Comput 19(2):167-187 21. Haasdijk E, Eiben AE, Karafotias G (2010) On-line evolution of robot controllers by an encapsulated evolution strategy. In:IEEE congress on evolutionary computation. IEEE, Barcelona 22. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm:past, present, and future. Multimed Tools Appl 80:8091-8126 23. Lambora A, Gupta K, Chopra K (2019) Genetic algorithm-a literature review. In:International conference on machine learning, big data, cloud and parallel computing (COMITCon), Faridabad, India 24. Haldurai L, Madhubala T, Rajalakshmi R (2016) A study on genetic algorithm and its applications. Int J Comput Sci Eng 4(10):139-143 25. Zhang L, Wong TN (2015) An object-coding genetic algorithm for integrated process planning and scheduling. Eur J Oper Res 244(2):434-444 26. Dunjko V, Briegel HJ (2018) Machine learning&artificial intelligence in the quantum domain:a review of recent progress. Rep Prog Phys 81(7):074001. https://doi.org/10.1088/1361-6633/aab406 27. Chen Q, Huang M, Xu Q et al (2020) Reinforcement learning-based genetic algorithm in optimizing multidimensional data discretization scheme. Math Probl Eng 2020:1-13 28. Kober J, Bagnell JA, Peter J (2013) Reinforcement learning in robotics:a survey. Int J Robot Res 32(11):1238-1274 29. Baker BC, Nolan JM, O'Neill B et al (2008) Crash compatibility between cars and light trucks:benefits of lowering front-end energy-absorbing structure in SUVs and pickups. Accid Anal Prev 40(1):116-125 30. Rajasekaran M, Ram VH, Subramanian M (2016) Multi-objective optimization of material layout for body-in-white using design of experiments. Int J Veh Struct Syst 8(1):17-22 31. Jiang Z, Chen W, Fu Y et al (2013) Reliability-based design optimization with model bias and data uncertainty. SAE Int J Mater Manuf 6(3):502-516 32. Shi L, Yang RJ, Zhu P (2013) An adaptive response surface method for crashworthiness optimization. Eng Optimiz 45(11):1365-1377 33. Zhan Z, Fu Y, Yang R et al (2013) On stochastic model interpolation and extrapolation methods for vehicle design. SAE Int J Mater Manuf 6(3):517-531 34. Fang H, Rais-Rohani M, Liu Z et al (2005) A comparative study of metamodeling methods for multi-objective crashworthiness optimization. Comput Struct 83(25/26):2121-2136 35. Yang J, Zhan Z, Zheng K et al (2016) Enhanced similarity-based metamodel updating strategy for reliability-based design optimization. Eng Optimiz 48(12):2026-2045 36. Ding R, Lin DK, Wei D (2004) Dual-response surface optimization:a weighted MSE approach. Qual Eng 16(3):377-385 |