1. Bloeck M (2012) Aluminium sheet for automotive applications. In:Rowe J (ed) Advanced materials in automotive engineering. Elsevier, Amsterdam, pp 85-108 2. Shi Y, Jin H, Wu PD et al (2017) Analysis of roping in an AA6111 T4P automotive sheet in 3D deformation states. Acta Mater 124:598-607 3. Engler O, Schäfer C, Brinkman HJ (2012) Crystal-plasticity simulation of the correlation of microtexture and roping in AA 6xxx Al-Mg-Si sheet alloys for automotive applications. Acta Mater 60:5217-5232 4. Guillotin A, Guiglionda G, Maurice C et al (2010) Quantification of roping intensity on aluminium sheets by areal power spectral density analysis. Mater Charact 61:1119-1125 5. Guillotin A, Guiglionda G, Maurice C et al (2011) Correlation of surface roping with through-thickness microtextures in an AA6xxx sheet. Metall Mater Trans A 42:1919-1924 6. Wu PD, Lloyd DJ, MacEwen SR (2003) A simple model describing roping in A1 sheet. Scr Mater 48:1243-1248 7. Qin L, Seefeldt M, Van Houtte P (2015) Analysis of roping of aluminum sheet materials based on the meso-scale moving window approach. Acta Mater 84:215-228 8. Hu Y, Zhou G, Yuan X et al (2023) An artificial neural network-based model for roping prediction in aluminum alloy sheet. Acta Mater 245:118605. https://doi.org/10.1016/j.actamat.2022.118605 9. Marteau J, Deltombe R, Bigerelle M (2020) Quantification of the morphological signature of roping based on multiscale analysis and autocorrelation function description. Materials 13:3040. https://doi.org/10.3390/ma13133040 10. Schäfer C, Brinkman HJ, Engler O et al (2015) Quantification of roping in aluminium sheet alloys for car body applications by combining 3D surface measurements with Fourier analysis. Int J Mater Res 106:248-257 11. Hu Y, Zhou G, Liu R et al (2023) On the correlation between roping, texture, and morphology of aluminium alloy sheets. J Mater Res Technol 26:571-586 12. Wei B, Hao K, Tang X et al (2019) A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes. Text Res J 89:3539-3555 13. Mundt M, Majumder S, Murali S et al (2019) Meta-learning convolutional neural architectures for multi-target concrete defect classification with the concrete defect bridge image dataset. In:Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11196-11205 14. Konovalenko I, Maruschak P, Brezinová J et al (2020) Steel surface defect classification using deep residual neural network. Metals 10:846. https://doi.org/10.3390/met10060846 15. Mangla P, Kumari N, Singh M et al (2020) Charting the right manifold:Manifold mixup for few-shot learning. In:Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 2218-2227 16. Hu Y, Vincent G, Stéphane P (2021) Leveraging the feature distribution in transfer-based few-shot learning. In:International conference on artificial neural networks. Springer International Publishing, Cham, pp 487-499 17. Chen WY, Liu YC, Kira Z et al (2018) A closer look at few-shot classification. In:International conference on learning representations. arXiv:1904.04232. https://doi.org/10.48550/arXiv.1904.04232 18. Lichtenstein M, Sattigeri P, Feris R et al (2020) TAFSSL:task-adaptive feature sub-space learning for few-shot classification. In European conference on computer vision, Springer, Cham, pp 522-539 19. Zhang H, Cisse M, Dauphin YN et al (2018) Mixup:beyond empirical risk minimization. In:international conference on learning representations, arXiv:1710.09412. https://doi.org/10.48550/arXiv.1710.09412 20. Verma V, Lamb A, Beckham C, et al (2019) Manifold mixup:better representations by interpolating hidden states. In:International conference on machine learning, PMLR, pp 6438-6447 21. GMW-15420(2012) Global qualification process for aluminum sheet. General Motors, US 22. Vinyals O, Blundell C, Lillicrap T et al (2016) Matching networks for one shot learning. Adv Neural Inf Process. arXiv:1606.04080. https://arxiv.org/abs/1606.04080 23. Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. IJCV 115:211-252 24. Zagoruyko S, Komodakis N (2016) Wide residual networks. In:British machine vision conference. arXiv:1605.07146. https://doi.org/10.48550/arXiv.1605.07146 25. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In:International conference on machine learning, PMLR, pp 1126-1135 26. Munkhdalai T, Yu H (2017) Meta networks. In:International conference on machine learning, PMLR, pp 2554-2563 27. Snell J, Swersky K, Zemel R (2017) Prototypical networks for few-shot learning. Adv Neural Inf Process. arXiv:1703.05175. https://arxiv.org/abs/1703.05175 28. Zhou B, Khosla A, Lapedriza A, et al (2016) Learning deep features for discriminative localization. In:Proceedings of the IEEE conference on computer vision and pattern recognition, CVPR, pp 2921-2929 29. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579-2605 30. McInnes L, Healy J, Saul N et al (2018) UMAP:uniform manifold approximation and projection. arXiv:1802.03426. https://doi.org/10.48550/arXiv.1802.03426 |