1. Plaza A, Hernandez M, Puyuelo et al (2023) Lower-limb medical and rehabilitation exoskeletons:a review of the current designs. IEEE Rev Biomed Eng 16:278-291 2. Mudie KL, Boynton AC, Karakolis T et al (2018) Consensus paper on testing and evaluation of military exoskeletons for the dismounted combatant. J Sci Med Sport 21(11):1154-1161 3. Bequette B, Norton A, Jones E et al (2020) Physical and cognitive load effects due to a powered lower-body exoskeleton. Hum Factors 62:411-423 4. Farris DJ, Harris DJ, Rice HM et al (2023) A systematic literature review of evidence for the use of assistive exoskeletons in defence and security use cases. Ergonomics 66:61-87 5. Rodriguez-Fernandez A, Lobo-Prat J, Font-Llagunes JM (2021) Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil 18(1):1-21 6. Wang SQ, Wang LT, Meijneke C et al (2015) Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng 23:277-286 7. Looze D, Bosch MP, Krause T et al (2016) Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59:671-681 8. Yang W, Xu LH, Yu LF et al (2021) Hybrid oscillator-based no-delay hip exoskeleton control for free walking assistance. Ind Rob 48:906-914 9. Matthias SK, Oliver H, Silke L et al (2013) Neurorehabilitation in chronic paraplegic patients with the HAL® exoskeleton-preliminary electrophysiological and fMRI data of a pilot study. In:Pons J, Torricelli D, Pajaro M (eds) Converging clinical and engineering research on neurorehabilitation. Biosystems&Biorobotics, vol 1. Springer, Berlin, Heidelberg, pp 611-615 10. Shushtari M, Arami A (2023) Human-exoskeleton interaction force estimation in Indego exoskeleton. Robot 12(3):66. https://doi.org/10.3390/robotics12030066 11. Calabrò RS, Naro A, Russo M et al (2018) Shaping neuroplasticity by using powered exoskeletons in patients with stroke:a randomized clinical trial. J Neuroeng Rehabil 15:35. https://doi.org/10.1186/12984-018-0377-8 12. Peterson B, Daniel M, Mani VS et al (2022) Team IHMC at the 2020 cybathlon:a user-centered approach towards personal mobility exoskeletons. J Neuroeng Rehabil 19:103. https://doi.org/10.1186/12984-022-01074-8 13. Verghese J, Wang C, Xue X et al (2021) Self-reported difficulty in climbing up or down stairs in nondisabled elderly. Arch Phys Med Rehabil 89:100-104 14. Lee HJ, Chou LS (2007) Balance control during stair negotiation in older adults. J Biomech 40:2530-2536 15. Della SS, Spinnler H, Venneri A (2004) Walking difficulties in patients with Alzheimer's disease might originate from gait apraxia. J Neurol Neurosurg Psychiatry 75(2):196-201 16. Chen B, Zi B, Qin L et al (2020) State-of-the-art research in robotic hip exoskeletons:a general review. J Orthop Translat 20:4-13 17. Akiyama Y, Okamoto S, Toda H et al (2018) Gait motion for naturally curving variously shaped corners. Adv Robot 32(2):77-88 18. Glaister BC, Bernatz GC, Klute GK et al (2007) Video task analysis of turning during activities of daily living. Gait Posture 25(2):289-294 19. Beravs T, Rebersek P, Novak D et al (2011) Development and validation of a wearable inertial measurement system for use with lower limb exoskeletons. In:11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26-28 October 2011 20. Kang I, Hsu H, Young A (2019) The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons. IEEE Robot Autom Lett 4:430-437 21. Zhou TC, Xiong CH, Zhang JJ et al (2021) Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. J Neuroeng Rehabil 18(1):1-15 22. Young AJ, Foss J, Gannon H et al (2017) Influence of power delivery timing on the energetics and biomechanics of humans wearing a hip exoskeleton. Front Bioeng Biotechnol 5:4. https://doi.org/10.3389/fbioe.2017.00004 23. Harrast MA, Finnoff JT (eds)(2016) Sports medicine:Study guide and review for boards. Springer, New York 24. Knudson DV (ed)(2007) Fundamentals of biomechanics. Springer, New York 25. Sheng WT, Zha FS, Guo W et al (2020) Finite class Bayesian inference system for circle and linear walking gait event recognition using inertial measurement units. IEEE Trans Neural Syst Rehabil Eng 28(12):2869-2879 26. Brand RA (ed)(1991) The biomechanics and motor control of human gait:normal, elderly and pathological. Elsevier, Amsterdam 27. Perry J, Burnfield JM (eds)(2010) Gait analysis:normal and oathological function. Slack, Thorofare |