1. Cai W, Liu C, Zhang C et al (2018) Developing the ecological compensation criterion of industrial solid waste based on energy for sustainable development. Energy 157:940-948 2. Zhu S, Jiang Z, Zhang H et al (2017) A carbon efficiency evaluation method for manufacturing process chain decision-making. J Clean Prod 148:665-680 3. Feng Y, Zhang Z, Tian G et al (2018) Data-driven accurate design of variable blank holder force in sheet forming under interval uncertainty using sequential approximate multi-objective optimization. Futur Gener Comput Syst 86:1242-1250 4. Wang H, Jiang Z, Wang Y et al (2018) A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. J Clean Prod 188:575-588 5. Cai W, Lai K, Liu C et al (2019) Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy. Sci Total Environ 665:23-32 6. Jiang ZG, Zhang H, Sutherland JW (2011) Development of multicriteria decision making model for remanufacturing technology portfolio selection. J Clean Prod 19:1939-1945 7. Tian G, Ren Y, Feng Y et al (2019) Modeling and planning for dual-objective selective disassembly using AND/OR graph and discrete artificial bee colony. IEEE Trans Ind Inform 15(4):2456-2468 8. Gong Q, Zhang H, Jiang Z et al (2018) Methodology for steel plate remanufacturing cleaning with flexible cable impact contact and friction. Procedia CIRP 72:1374-1379 9. Tian G, Zhou M, Li P (2018) Disassembly sequence planning considering fuzzy component quality and varying operational cost. IEEE Trans Autom Sci Eng 15:748-760 10. Jiang Z, Jiang Y, Wang Y et al (2019) A hybrid approach of rough set and case-based reasoning to remanufacturing process planning. J Intell Manuf 30:19-32 11. Wang H, Jiang Z, Zhang X et al (2017) A fault feature characterization based method for remanufacturing process planning optimization. J Clean Prod 161:708-719 12. Wang H, Jiang Z, Zhang H et al (2019) An integrated MCDM approach considering demands-matching for reverse logistics. J Clean Prod 208:199-210 13. Goepp V, Zwolinski P, Caillaud E (2014) Design process and data models to support the design of sustainable remanufactured products. Comput Ind 65(3):480-490 14. Ding Z, Jiang Z, Zhang H et al (2018) An integrated decisionmaking method for selecting machine tool guide ways considering remanufacture ability. Int J Comput Integr Manuf. https://doi.org/10.1080/0951192X.2018.1550680 15. Cao HJ, Chen X, Chen HF (2012) The redesign method of heavy machine tool based on matter-element theory and its application. Manuf Technol Mach Tool 12:38-43 16. Abdulrahman MDA, Subramanian N, Liu C et al (2015) Viability of remanufacturing practice:a strategic decision making framework for Chinese auto-parts companies. J Clean Prod 105:311-323 17. Yang SS, Ong SK, Nee AYC (2016) Adecision support tool for product design for remanufacturing. Procedia CIRP 40:144-149 18. Tian G, Zhang H, Zhou MC (2017) AHP, gray correlation, and TOPSIS combined approach to green performance evaluation of design alternatives. IEEE Trans Syst Man Cybern Syst 48(7):1093-1105 19. Charter M, Gray C (2008) Remanufacturing and product design. Int J Prod Dev 6(34):375-392 20. Windmill J, Hatcher GD, Ijomah WL (2013) Integrating design for remanufacture into the design process:the operational factors. J Clean Prod 39:200-208 21. Hatcher GD, Ijomah WL, Windmill JFC (2011) Design for remanufacture:a literature review and future research needs. J Clean Prod 19(17/18):2004-2014 22. Fegade V, Shrivatsava RL, Kale AV (2015) Design for remanufacturing:methods and their approaches. Mater Today Proc 2(4/5):1849-1858 23. Li L, Li C, Tang Y (2017) An integrated approach of reverse engineering aided remanufacturing process for worn components. Robot Comput Integr Manuf 48:39-50 24. Xing K, Belusko M, Luong L (2007) An evaluation model of product upgradeability for remanufacture. Int J Adv Manuf Technol 35(1/2):1-14 25. Shi J, Fan S, Wang Y (2018) A GHG emissions analysis method for product remanufacturing:a case study on a diesel engine. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.09.200 26. Du Y, Cao H, Liu F (2012) An integrated method for evaluating the remanufacture ability of used machine tool. J Clean Prod 20(1):82-91 27. Sundin E (2004) Product and process design for successful remanufacturing. Linköping University Electronic Press, Linkoöing 28. Gehin A, Zwolinski P, Brissaud D (2008) A tool to implement sustainable end-of-life strategies in the product development phase. J Clean Prod 16(5):566-576 29. Harivardhini S, Krishna KM, Chakrabarti A (2017) An integrated framework for supporting decision making during early design stages on end-of-life disassembly. J Clean Prod 168:558-574 30. Smith S, Hsu LY, Smith GC (2016) Partial disassembly sequence planning based on cost-benefit analysis. J Clean Prod 139:729-739 31. Cai W, Liu C, Lai K et al (2019) Energy performance certification in mechanical manufacturing industry:a review and analysis. Energy Convers Manag 186:415-432 32. de Aguiar J, Oliveira LD, da Silva JO (2016) A design tool to diagnose product recyclability during product design phase. J Clean Prod 141:219-229 33. Chang JC, Graves SC, Kirchain RE (2018) Integrated planning for design and production in two-stage recycling operations. Eur J Oper Res 273(2):535-547 34. Dostatni E, Diakun J, Grajewski D (2016) Multi-agent system to support decision-making process in design for recycling. Soft Comput 20(11):4347-4361 35. Peng G, Yu H, Liu X et al (2010) A desktop virtual reality-based integrated system for complex product maintainability design and verification. Assem Autom 30(4):333-344 36. Zhou D, Chen J, Lv C et al (2016) A method for integrating ergonomics analysis into maintainability design in a virtual environment. Int J Ind Ergon 54:154-163 37. Kumar S, Khan IA, Gandhi OP (2015) A theoretical framework for extraction and quantification of psychological attributes in design for maintainability:a team-inspired approach. Res Eng Des 26(4):1-20 38. Feng Y, Hong Z, Tian G et al (2018) Environmentally friendly MCDM of reliability-based product optimisation combining DEMATEL-based ANP, interval uncertainty and VlseKriterijumska Optimizacija Kompromisno Resenje (VIKOR). Inf Sci 442:128-144 39. Golinska P, Kosacka M, Mierzwiak R (2015) Grey decision making as a tool for the classification of the sustainability level of remanufacturing companies. J Clean Prod 105:28-40 40. Yang SS, Nasr N, Ong SK (2017) Designing automotive products for remanufacturing from material selection perspective. J Clean Prod 153:570-579 41. Wang H, Jiang Z, Wang Y et al (2018) A demands-matching multi-criteria decision-making method for reverse logistics. Procedia CIRP 72:1398-1403 42. Peng S, Li T, Li M (2019) An integrated decision model of restoring technologies selection for engine remanufacturing practice. J Clean Prod 206:598-610 43. Feng YX, Zhou MC, Tian GD et al (2018) Target disassembly sequencing and scheme evaluation for CNC machine tools using improved multiobjective ant colony algorithm and fuzzy integral. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2847448 44. Bhatia MS, Srivastava RK (2018) Analysis of external barriers to remanufacturing using grey-DEMATEL approach:an Indian perspective. Resour Conserv Recycl 136:79-87 45. Zhao QQ, Huang TM (2018) Multi-objective decision making based on entropy weighted-Vague sets. J Comput Appl 38(5):1250-1253 46. Na S, Zhang YZ, Shen GX et al (2011) Reliability evaluation of CNC machine tools based on matter-element model and extensional evaluation method. In:2011 international conference on mechatronic science, electric engineering and computer (MEC), 19-22 Aug, Jilin, pp 2345-2348 47. Liu GF, Liu ZF, Li G (2001) Green design and green manufacturing. China Machine Press, Beijing 48. Jiang ZG, Ding ZY, Zhang H et al (2019) Data-driven ecological performance evaluation for remanufacturing process. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.111844 49. Schroeder NB (2011) Design of a second life product family from the perspective of the remanufacturing agent. University of Illinois, Urbana-Champaign 50. Duraccio V, Compagno L, Trapani N et al (2016) Failure prevention through performance evaluation of reliability components in working condition. J Fail Anal Prev 16:1092-1100 51. Li L, Huang H, Zhao F et al (2019) Variations of energy demand with process parameters in cylindrical drawing of stainless steel. J Manuf Sci Eng. https://doi.org/10.1115/1.4043982 52. Yan T, Han C (2014) A novel approach of rough conditional entropy-based attribute selection for incomplete decision system. Math Probl Eng 5:1-15 53. Wang J, Liu SY, Zhang J (2005) Fuzzy multiple objectives decision making based on vague sets. Syst Eng Theory Pract 25(2):119-122 54. Elzarka HM, Yan H, Chakraborty D (2017) A vague set fuzzy multi-attribute group decision-making model for selecting onsite renewable energy technologies for institutional owners of constructed facilities. Sustain Cities Soc 35:430-439 |