1. Mohrbacher H (2013) Reverse metallurgical engineering towards sustainable manufacturing of vehicles using Nb and Mo alloyed high performance steels. Adv Manuf 1:28-41 2. Mohrbacher H, Spöttl M, Paegle J (2015) Innovative manufacturing technology enabling light weighting with steel in commercial vehicles. Adv Manuf 3:3-18 3. Isasti N, Jorge-Badiola D, Taheri ML et al (2014) Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels. Part I:yield strength. Metall Mat Trans A 45:4960-4971 4. Isasti N, Jorge-Badiola D, Taheri ML et al (2014) Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels. Part II:impact toughness. Metall Mat Trans A 45:4972-4982 5. Isasti N, Jorge-Badiola D, Taheri ML et al (2013) Phase transformation study in Nb-Mo microalloyed steels using dilatometry and EBSD quantification. Metall Mat Trans A 44:3552-3563 6. Pavlina EJ, Speer JG, van Tyne CJ (2012) Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron. Script Mater 66(5):243-246 7. Hoerner M, Speer J, Eberhart M (2017) Comparison of Ab-initio solute-boundary binding energies and experimental recrystallization data in austenite for solute Nb and other elements. ISIJ Int 57(10):1847-1850 8. Hepburn DJ, MacLeod E, Ackland GJ (2014) Transition metal solute interactions with point defects in austenitic iron from first principles. Phys Rev B 92:014110 9. Li YJ, Ponge D, Choi P et al (2015) Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Script Mater 96:13-16 10. Eckstein HJ, Fennert M, Ohser J (1993) Application of thermodynamic computations to the solution behaviour of niobium and vanadium carbonitrides. Steel Res 64(3):143-147 11. Lee SJ, Matlock D, van Tyne C (2011) An empirical model for carbon diffusion in austenite incorporating alloying element effects. ISIJ Int 51(11):1903-1911 12. Medina SF, Mancilla JE (1996) Influence of alloying elements in solution on static recrystallization kinetics of hot deformed steels. ISIJ Int 36(8):1063-1069 13. Akben MG, Bacroix B, Jonas JJ (1983) Effect of vanadium and molybdenum addition on high temperature recovery, recrystallization and precipitation behavior of niobium-based microalloyed steels. Acta Metall 31(1):161-174 14. Togashi F, Nishizawa T (1976) Effect of alloying elements on the mobility of ferrite/austenite interface. J Jpn Inst Metals 40(1):12-21 15. Tither G, Lavite M (1976) Beneficial stress-strain behavior of moly-columbium steel line pipe. JOM 27:15-23 16. Funakawa Y, Shiozaki T, Tomita K et al (2004) Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int 44(11):1945-1951 17. Engberg G, Lissel L (2008) A physically based microstructure model for predicting the microstructural evolution of a C-Mn steel during and after hot deformation. Steel Res Int 79:47-58 18. Yen HW, Chen PY, Huang CY et al (2011) Interphase precipitation of nanometer-sized carbides in a titanium-molybdenumbearing low-carbon steel. Acta Mater 59:6264-6274 19. Larzabal G, Isasti N, Rodriguez-Ibabe JM (2018) Precipitation strengthening by induction treatment in high strength low carbon microalloyed hot-rolled plates. Metall Mat Trans A 49:946-961 20. Huang BM, Yang JR, Yen HW et al (2014) Secondary hardened bainite. Mater Sci Technol 30(9):1014-1023 21. Belanger P, Hall J, Coryell J et al (2013) Automotive body presshardened steel trends. In:Proceedings of the international symposium on the new developments of advanced high-strength steel, 23-27 June 2013, Vail, Colorado, USA, pp 239-250 22. Bian J, Mohrbacher H (2013) Novel alloying design for press hardening steels with better crash performance. In:Proceedings of the international symposium on the new developments of advanced high-strength steel, 23-27 June 2013, Vail, Colorado, USA, pp 251-262 23. Olsson R, Haglund N (1991) Cost effective fabrication of submarines and mobile cranes in high performance steels. Int J Join Mater 3:120-128 24. Shang C, Guo F (2018) The state of the art of long-distance gas pipeline in China. Gas Energy 1:24-29 25. Piette M, Dubrulle-Prat E, Perdrix C et al (2001) Effect of 0-0.1%Nb additions on mechanical properties of plates processed by thermomechanically controlled processing and accelerated cooling. Iron Mak Steelmak 28(2):175-179 26. Subramanian SV, Yang Y (2014) On austenite conditioning and recrystallization control of higher grade linepipe steels (X100) with niobium and molybdenum additions. In:Mohrbacher H (ed) Fundamentals and applications of Mo and Nb alloying in high performance steels, vol 1, TMS, pp 3-22 27. Bian J, Mohrbacher H, Zhang JS et al (2015) Application potential of high performance steels for weight reduction and efficiency increase in commercial vehicles. Adv Manuf 3:27-36 28. Kage I, Matsui K, Kawabata F (2005) Minimum maintenance steel plates and their application technologies for bridge-life cycle cost reduction technologies with environmental safeguards for preserving social infrastructure assets. JFE Tech Rep 5:37-44 29. Walp MS, Speer JG, Matlock DK (2004) Fire-resistant steels. Adv Mater Process 162:34-36 30. Mizutani Y, Ishibashi K, Yoshi K et al (2004) 590 MPa class fireresistant steel for building structural use. Nippon Steel Tech Rep 90:45-52 31. Sugimoto K (2009) Fracture strength and toughness of ultra-high strength TRIP aided steels. Mater Sci Technol 25:1108-1117 32. Nagumo M (2001) Function of hydrogen in embrittlement of high-strength steels. ISIJ Int 41:590-598 33. Degenkolbe J, Mahn J, Muesgen B et al (1987) Experience gained in the accelerated cooling of plate directly after rolling. Thyssen Tech Rep 87(1):41-55 34. Takaki S, Ngo-Huynh KL, Nakada N et al (2012) Strengthening mechanism in ultra low carbon martensitic steel. ISIJ Int 52:710-716 35. Grossman MA (1942) Hardenability calculated from chemical composition. Trans Am Inst Min Metall Petrol Eng 150:227-259 36. Maki T, Tsuzaki K, Tamura I (1980) The morphology of the strengthening of lath martensite in steels. Trans Iron Steel Inst Jpn 20:207-215 37. Hannula J, Kömi J, Porter D et al (2017) Effect of boron on the strength and toughness of direct-quenched low-carbon niobium bearing ultra-high-strength martensitic steel. Metall Mat Trans A 48:5344-5356 38. Mohrbacher H (2018) Property optimization in as-quenched martensitic steel by molybdenum and niobium alloying. Metals 8:234. https://doi.org/10.3390/met8040234 39. Ohnuma M, Suzuki J, Wei FG et al (2008) Direct observation of hydrogen trapped by NbC in steel using small-angle neutron scattering. Script Mater 58:142-145 40. Mohrbacher H (2019) Metallurgical effects of niobium and molybdenum on heat-affected zone toughness in low-carbon steel. Appl Sci 9(9):1847. https://doi.org/10.3390/app9091847 41. Ahlblom B, Hansson P, Narström T (2007) Martensitic structural steels for increased strength and wear resistance. Mater Sci Forum 539(543):4515-4520 42. Ishikawa N, Ueda K, Mitao S et al (2011) High-performance abrasion-resistant steel plates with excellent low-temperature toughness. In:Proceedings of international symposium on the recent developments in plate steels. AIST, Winter Park, pp 81-91 43. Schmit F, Cobo S (2016) New press hardened steels and tailored blank applications. In:Materials in Car Body Engineering 2016, Bad Nauheim, Germany, 9-11 May 2016 44. Avtar R, Jha BK, Saxena A et al (1986) An as hot rolled approach to production of molybdenum and chromium microalloyed dual phase steels. Trans ISIJ 26:822-828 45. Coldren AP, Ellis GT (1980) Using CCT Diagrams to optimize the composition of an as-rolled dual-phase steel. J Metals 32(3):41-48 46. Geib MD, Matlock DK, Krauss G (1980) The effect of intercritical annealing temperature on the structure of niobium microalloyed dual-phase steel. Metall Trans A 11:1683-1689 47. Irie T, Satoh S, Hashiguchi K et al (1981) Metallurgical factors affecting the formability of cold-rolled high strength steel sheets. Trans ISIJ 21(11):793-801 48. Sugimoto K (2009) Fracture strength and toughness of ultra-high strength TRIP aided steels. Mater Sci Technol 25(9):1109-1117 49. Hashimoto S, Ikeda S, Sugimoto K et al (2004) Effects of Nb and Mo addition to 0.2%C-1.5%Si-1.5%Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets. ISIJ Int 44(9):1590-1598 50. Sugimoto K, Murata M, Muramatsu M et al (2007) Formability of C-Si-Mn-Al-Nb-Mo ultra high-strength TRIP-aided sheet steels. ISIJ Int 47(9):1357-1362 51. Kobayashi J, Ina D, Yoshikawa N et al (2012) Effects of the addition of Cr, Mo and Ni on the microstructure and retained austenite characteristics of 0.2%C-Si-Mn-Nb ultrahigh-strength TRIP-aided bainitic ferrite steels. ISIJ Int 52(10):1894-1901 52. Speer JG, Matlock DK, de Cooman BC et al (2003) Carbon partitioning into austenite after martensite transformation. Acta Mater 51:2611-2622 53. Yan S, Liu X, Liang T et al (2019) Effect of micro-alloying elements on microstructure and mechanical properties in C-Mn-Si quenching and partitioning (Q&P) steels. Steel Res Int 90:1800257. https://doi.org/10.1002/srin.201800257 54. Sun XJ, Li ZD, Yong QL et al (2012) Third generation high strength low alloy steels with improved toughness. Sci China Technol Sci 55(7):1797-1805 55. Yuan S, Shang C, Xie Z et al (2018) Impact of intercritical annealing on retained austenite and toughness of a 460 MPa grade multiphase heavy gauge plate steel. Steel Res Int 89:1800006. https://doi.org/10.1002/srin.201800006 56. Stewart RA, Speer JG, Thomas BG et al (2018) Process design for quenching and partitioning of plate steels. In:Proceedings of the 2nd international symposium on the recent developments in plate steels, Orlando, AIST, pp 469-475 57. Hernaut P, Ertzibengoa D, de Cooman BC et al (2018) Development of high-performance steel plates at NLMK clabecq. In:Proceedings of the 2nd international symposium on the recent developments in plate steels, Orlando, AIST, pp 139-149 58. Xie ZJ, Xiong L, Han G et al (2018) Thermal stability of retained austenite and properties of a multi-phase low alloy steel. Metals 8(10):807. https://doi.org/10.3390/met8100807 |