1. Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in metal cutting:strains, strain rates and temperatures in chip formation. J Mater Process Technol 121(1):123-135 2. List G, Sutter G, Bi XF et al (2013) Strain, strain rate and velocity fields determination at very high cutting speed. J Mater Process Technol 213(5):693-699 3. Abolghasem S, Basu S, Shekhar S et al (2012) Mapping subgrain sizes resulting from severe simple shear deformation. Acta Mater 60(1):376-386 4. Shekhar S, Abolghasem S, Basu S et al (2012) Effect of severe plastic deformation in machining elucidated via rate-strain-microstructure mappings. ASME J Manuf Sci Eng 134(3):031008 5. Dong L, Schneider J (2008) Microstructural investigation of AA 2195 T81 chips formed during a metal-cutting process. J Mater Sci 43:7445-7450 6. Cai JZ, Kulovits A, Shankar MR et al (2008) Novel microstructures from severely deformed Al-Ti alloys created by chip formation in machining. J Mater Sci 43:7474-7480 7. Brown TL, Saldana C, Murthy TG et al (2009) A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater 57(18):5491-5500 8. Oxley PLB, Welsh MJM (1963) Calculating the shear angle in orthogonal metal cutting from fundamental stress, strain, strain rate properties of the work material. In:Proceedings of the 4th international machine tool design and research conference, Oxford, pp 73-86 9. Stevenson MG, Oxley PLB (1969) An experimental investigation of the influence of speed and scale on the strain-rate in a zone of intense plastic deformation. Proc Inst Mech Eng 184(1):561-576 10. Hastings WF, Oxley PLB (1976) Predicting tool life from fundamental work material properties and cutting conditions. CIRP Ann Manuf Technol 25(1):33-38 11. Oxley PLB, Hastings WF (1977) Predicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditions. Proc Math Phys Sci 356(1686):395-410 12. Sutton MA, Wolters WJ, Peters WH et al (1983) Determination of displacements using an improved digital correlation method. Image Vision Comput 1(3):133-139 13. Sutton MA, Turner JL, Bruck HA et al (1991) Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Exp Mech 31(2):168-177 14. Lee S, Hwang J, Shankar MR et al (2006) Large strain deformation field in machining. Metall Mater Trans A 37:1633-1643 15. Shankar MR, Rao BC, Lee S et al (2006) Severe plastic deformation (SPD) of titanium at near-ambient temperature. Acta Mater 54:3691-3700 16. Hijazi A, Madhavan V (2008) A novel ultra-high speed camera for digital image processing applications. Meas Sci Technol 19(8):085503 17. Mahadevan D (2007) Experimental determination of velocity and strain rate fields in metal cutting of OFHC copper. Dissertation, Wichita State University 18. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann Manuf Technol 43(1):35-38 19. Ma C, Shamoto E, Moriwaki T et al (2004) Study of machining accuracy in ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 44(12/13):1305-1310 20. Bai W, Sun R, Gao Y et al (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83(5/8):1025-1036 21. Kim GD, Loh BG (2011) Direct machining of micro patterns on nickel alloy and mold steel by vibration assisted cutting. Int J Precis Eng Manuf 12(4):583-588 22. Zhou XQ, Zhao SX, Zhu ZW et al (2011) A study on elliptical vibration cutting by finite element analysis. Adv Mater Res 230:1029-1033 23. Zhao HD, Li SG, Zou P et al (2017) Process modeling study of the ultrasonic elliptical vibration cutting of Inconel 718. Int J Adv Manuf Technol 92(5/8):2055-2068 24. Shamoto E, Moriwaki T (1999) Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann Manuf Technol 48(1):441-444 25. Makadia AJ, Nanavati JI (2013) Optimisation of machining parameters for turning operations based on response surface methodology. Measurement 46(4):1521-1529 26. Kosaraju S, Anne VG (2013) Optimal machining conditions for turning Ti-6Al-4V using response surface methodology. Adv Manuf 1(4):329-339 27. Ahilan C, Kumanan S, Sivakumaran N et al (2013) Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision making tools. Appl Soft Comput 13(3):1543-1551 28. Rao RV, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Eng Appl Artif Intel 26(1):524-531 29. Abhang LB, Hameedullah M (2012) Optimization of machining parameters in steel turning operation by Taguchi method. Procedia Eng 38:40-48 30. Kivak T (2014) Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement 50:19-28 31. Sarıkaya M (2014) Optimization of the surface roughness by applying the Taguchi technique for the turning of stainless steel under cooling conditions. Mater Tehnol 49:941-948 32. Basar G, Kirli AH, Kahraman F et al (2018) Modeling and optimization of face milling process parameters for AISI 4140 steel. Tehnički glasnik 12(1):5-10 33. Taguchi G (1986) Introduction to quality engineering:designing quality into products and processes. Asian Productivity Organization, Tokyo and Unipub/Kraus International, White Plains, NY 34. Wang Q, Wu Y, Gu J et al (2016) Fundamental machining characteristics of the in-base-plane ultrasonic elliptical vibration assisted turning of Inconel 718. Procedia CIRP 42:858-862 35. Lu D, Wang Q, Wu Y et al (2015) Fundamental turning characteristics of Inconel 718 by applying ultrasonic elliptical vibration on the base plane. J Manuf Process 30(8):1010-1017 36. Lotfi M, Amini S (2018) FE simulation of linear and elliptical ultrasonic vibrations in turning of Inconel 718. Proc Inst Mech Eng E 232(4):438-448 37. ABAQUS, Inc. (2017) ABAQUS user's manual. ABAQUS Inc., Silicon Valley 38. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Frac Mech 21(1):31-48 39. Hillerborg A, Mode ér M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773-781 40. Iturbe A, Giraud E, Hormaetxe E et al (2017) Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment. Mater Sci Eng C 682:441-453 41. Long Y, Guo CS, Ranganath S et al (2010) Multi-phase FE model for machining Inconel 718. In:Proceedings of the ASME 2010 international manufacturing science and engineering conference, 12-15 October, Erie, Pennsylvania, USA 42. Nath C, Rahman M (2008) Effect of machining parameters in ultrasonic vibration cutting. Int J Mach Tools Manuf 48(9):965-974 43. Mitrofanov AV, Babitsky VI, Silberschmidt VV (2005) Thermomechanical finite element simulations of ultrasonically assisted turning. Comput Mater Sci 32(3/4):463-471 44. Tang L, Huang J, Xie L (2011) Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool. Int J Adv Manuf Technol 53(9/12):1167-1181 45. Yang WP, Tarng YS (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process Technol 84(1/3):122-129 46. Mitrofanov AV, Ahmed N, Babitsky VI et al (2005) Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J Mater Process Technol 162:649-654 47. Ahmed N, Mitrofanov AV, Babitsky VI et al (2007) 3D finite element analysis of ultrasonically assisted turning. Comput Mater Sci 39(1):149-154 48. Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34(1/2):131-140 |