1. Gilles J, Osher S (2016) Wavelet burst accumulation for turbulence mitigation. J Electron Imaging 25(3):033003 2. Panetta K, Gao C, Agaian S (2015) Human-visual-system-inspired underwater image quality measures. IEEE J Ocean Eng 41(3):541-551 3. Paul N, De Chillaz A, Collette J (2015) On-line restoration for turbulence degraded video in nuclear power plant reactors. Signal Image Video Process 9(3):601-610 4. Turlaev DG, Dolin LS (2013) On observing underwater objects through a wavy water surface:a new algorithm for image correction and laboratory experiment. Izvestiya Atmos Ocean Phys 49(3):339-345 5. Zhang Z, Yang X (2019) Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance. Adv Manuf 7:315-325 6. Holohan ML, Dainty JC (1997) Low-order adaptive optics:a possible use in underwater imaging? Opt Laser Technol 29(1):51-55 7. Murase H (1992) Surface shape reconstruction of a nonrigid transparent object using refraction and motion. IEEE Trans Pattern Anal Mach Intell 14:1045-1052 8. Seemakurthy K, Rajagopalan AN (2015) Deskewing of underwater images. IEEE Trans Image Process 24(3):1046-1059 9. Tian Y, Narasimhan SG (2009) Seeing through water:image restoration using model-based tracking. In:Proceedings of the IEEE 12th international conference on computer vision. IEEE, Kyoto, pp 2303-2310 10. Cox C, Munk W (1956) Slopes of the sea surface deduced from photographs of sun glitter. Bull Scripps Inst Oceanogr 6:401-479 11. Efros A, Isler V, Shi J et al (2004) Seeing through water. In:Proceedings of conference and workshop on neural information processing systems. Neural Information Processing Systems Foundation, Vancouver, pp 393-400 12. Donate A, Dahme G, Ribeiro E (2006) Classification of textures distorted by water waves. In:Proceedings of international conference on pattern recognition. IEEE, Hong Kong, pp 421-424 13. Donate A, Ribeiro E (2006) Improved reconstruction of images distorted by water waves. In:Advances in computer graphics and computer vision. Springer, Berlin, pp 264-277 14. Wen Z, Lambert A, Fraser D et al (2010) Bispectral analysis and recovery of images distorted by a moving water surface. Appl Opt 49(33):6376-6384 15. Kanaev AV, Ackerman J, Fleet E et al (2009) Imaging through the air-water interface. In:Proceedings of computational optical sensing and imaging. OSA, San Jose, pp 13-15 16. Kanaev AV, Hou W, Restaino SR et al (2015) Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric. Opt Express 23(13):17077-17090 17. Kanaev AV, Hou W, Restaino SR et al (2014) Correction methods for underwater turbulence degraded imaging. In:Proceedings of remote sensing of clouds and the atmosphere XIX; and optics in atmosphereic propagation and adaptive systems XVII. Proc. SPIE, 92421P 18. Zhang R, He D, Li Y et al (2018) Synthetic imaging through wavy water surface with centroid evolution. Opt Express 26(20):26009-26019 19. Lau CP, Lai YH, Lui LM (2019) Variational models for joint subsampling and reconstruction of turbulence-degraded images. J Sci Comput 78(3):1488-1525 20. Lau CP, Lai YH, Lui LM (2019) Reconstruction of atmospheric turbulence-distorted images via RPCA and quasiconformal maps. Inverse Probl 35(7):074002 21. Oreifej O, Guang S, Pace T et al (2011) A two-stage reconstruction approach for seeing through water. In:Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, Colorado, pp 1153-1160 22. Halder KK, Paul M, Tahtali M et al (2017) Correction of geometrically distorted underwater images using shift map analysis. J Opt Soc Am A 34(4):666-673 23. Zhang Z, Yang X (2019) Reconstruction of distorted underwater images using robust registration. Opt Express 27(7):9996-10008 24. Li Z, Murez Z, Kriegman D et al (2018) Learning to see through turbulent water. In:Proceedings of 2018 IEEE winter conference on applications of computer vision. IEEE, Lake Tahoe, pp 512-520 25. Lau CP, Yung CP, Lui LM (2018) Image retargeting via beltrami representation. IEEE Trans Image Process 27(12):5787-5801 26. James JG, Agrawal P, Rajwade A (2019) Restoration of nonrigidly distorted underwater image using a combination of compressive sensing and local polynomial image representations. In:Proceedings of the IEEE international conference on computer vision. IEEE, Seoul, pp 7839-7848 27. He K, Sun J, Tang X (2012) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397-1409 28. Bay H, Tuytelaars T, Van GL (2006) Surf:speeded up robust features. In:Proceedings of European conference on computer vision. Graz, pp 404-417 29. Rosten E, Porter R, Drummond T (2008) Faster and better:a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105-119 30. Leutenegger S, Chli M, Siegwart RY (2011) BRISK:Binary robust invariant scalable keypoints. In:Proceedings of international conference on computer vision. IEEE, Barcelona, pp 2548-2555 31. Nam T, Kim S, Jung D (2019) Hardware implementation of KLT tracker for real-time intruder dectection and tracking using onboard camera. Int J Aeronaut Space Sci 20(1):300-314 32. Nakanishi-Ohno Y, Hukushima K (2018) Data-driven diagnosis for compressed sensing with cross validation. Phys Rev E 98(5):052120 33. Sun T, Tang YG, Zhang Z (2019) Structural information reconstruction of distorted underwater images using image registration. Appl Sci 10(16):5670 34. Rueckert D, Sonoda LI, Hayes C et al (1999) Nonrigid registration using freeform deformations:application to breast MR images. IEEE Trans Med Imaging 18(8):712-721 35. Berdinsky D, Kim TW, Cho D et al (2015) Based of T-meshes and the refinement of hierarchical B-splines. Comput Methods Appl Mech Eng 283:841-855 36. Xue W, Zhang L, Mou XQ et al (2013) Gradient magnitude similarity deviation:a highly efficient perceptual image quality index. IEEE Trans Image Process 23(2):684-695 37. Zhang L, Zhang L, Mou XQ et al (2011) FSIM:a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378-2386 |