[1] Lendlein A, Behl M, Hiebl B et al (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Dev 7(3):357-379 [2] Maidin S, Wee KJ, Sharum MA et al (2023) A review on 4D additive manufacturing—the application, smart materials & effect of various stimuli on 4D printed objects. J Teknol 85(8):63-71 [3] Aldawood FK (2023) A comprehensive review of 4D printing: state of the arts, opportunities, and challenges. Actuators 12(3):101. https://doi.org/10.3390/act12030101 [4] Carrell J, Gruss G, Gomez E (2020) Four-dimensional printing using fused-deposition modeling: a review. Rapid Prototyping J 26(5):855-869 [5] Sharma S, Chhetry A, Zhang SP et al (2021) Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 15(3):4380-4393 [6] Wu HZ, Zhang X, Ma Z et al (2020) A material combination concept to realize 4D printed products with newly emerging property/functionality. Adv Sci 7(9):1903208. https://doi.org/10.1002/advs.201903208 [7] Wang X, Xia Z, Zhao C et al (2020) Microstructured flexible capacitive sensor with high sensitivity based on carbon fiber-filled conductive silicon rubber. Sensor Actuat A-Phys 312:112147. https://doi.org/10.1016/j.sna.2020.112147 [8] Kurakula M, Koteswara Rao GSN (2020) Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur Polym J 136:109919. https://doi.org/10.1016/j.eurpolymj.2020.109919 [9] Tao R, Ji L, Li Y et al (2020) 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves. Compos Part B-Eng 201:108344. https://doi.org/10.1016/j.compositesb.2020.108344 [10] Zeng S, Feng Y, Gao Y et al (2022) Layout design and application of 4D-printing bio-inspired structures with programmable actuators. Bio-Des Manuf 5(1):189-200 [11] Stuart MAC, Huck WTS, Genzer J et al (2010) Emerging applications of stimuli-responsive polymer materials. Nat mater 9(2):101-113 [12] Sun L, Huang WM, Ding Z et al (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577-640 [13] Gladman SA, Matsumoto EA, Nuzzo RG et al (2016) Biomimetic 4D printing. Nat mater 15(4):413-418 [14] Deng D, Chen Y (2015) Origami-based self-folding structure design and fabrication using projection based stereolithography. J Mech Des 137(2):021701. https://doi.org/10.1115/1.4029066 [15] Peraza-Hernandez EA, Hartl DJ, Malak RJ Jr (2013) Design and numerical analysis of an SMA mesh-based self-folding sheet. Smart Mater Struct 22(9):094008. https://doi.org/10.1088/0964-1726/22/9/094008 [16] Le Duigou A, Castro M, Bevan R et al (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106-114 [17] Teoh JEM, Zhao Y, An J et al (2017) Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. Smart Mater Struct 26(12):125001. https://doi.org/10.1088/1361-665X/aa908a [18] Correa D, Poppinga S, Mylo MD et al (2020) 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos T R Soc A 378(2167):20190445. https://doi.org/10.1098/rsta.2019.0445 [19] Alshebly YS, Nafea M (2023) Effects of printing parameters on 4D-printed PLA actuators. Smart Mater Struct 32(6):064008. https://doi.org/10.1088/1361-665X/acd504 [20] Wang J, Wang Z, Song Z et al (2019) Programming multistage shape memory and variable recovery force with 4D printing parameters. Adv Mater Technol 4(11):1900535. https://doi.org/10.1002/admt.201900535 [21] Ghazal AF, Zhang M, Mujumdar AS et al (2022) Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Crit Rev Food Sci 63(25):7399-7422 [22] Testoni O, Lumpe T, Huang JL et al (2021) A 4D printed active compliant hinge for potential space applications using shape memory alloys and polymers. Smart Mater Struct 30(8):085004. https://doi.org/10.1088/1361-665X/ac01fa [23] Bodaghi M, Damanpack AR, Liao WH (2016) Self-expanding/shrinking structures by 4D printing. Smart Mater Struct 25(10):105034. https://doi.org/10.1088/0964-1726/25/10/105034 [24] Mao Y, Yu K, Isakov MS et al (2015) Sequential self-folding structures by 3D printed digital shape memory polymers. Sci Rep 5:13616. https://doi.org/10.1038/srep13616 [25] Lai J, Ye X, Liu J et al (2021) 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Mater Des 205:109699. https://doi.org/10.1016/j.matdes.2021.109699 [26] Yamamura S, Iwase E (2021) Hybrid hinge structure with elastic hinge on self-folding of 4D printing using a fused deposition modeling 3D printer. Mater Des 203:109605. https://doi.org/10.1016/j.matdes.2021.109605 [27] Soleimanzadeh H, Rolfe B, Bodaghi M et al (2020) Closed-loop 4D-printed soft robots. Mater Des 188:108411. https://doi.org/10.1016/j.matdes.2019.108411 [28] Zhou X, Ren L, Song Z et al (2023) Advances in 3D/4D printing of mechanical metamaterials: from manufacturing to applications. Compos Part B-Eng. https://doi.org/10.1016/j.compositesb.2023.110585 [29] Le Duigou A, Fruleux T, Matsuzaki R et al (2021) 4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: towards sustainable metamaterials. Mater Des 211:110158. https://doi.org/10.1016/j.matdes.2021.110158 [30] Demoly F, Dunn ML, Wood KL et al (2021) The status, barriers, challenges, and future in design for 4D printing. Mater Des 212:110193. https://doi.org/10.1016/j.matdes.2021.110193 [31] Li X, Fan L, Li R et al (2023) 3D/4D printing of β-cyclodextrin-based high internal phase emulsions. J Food Eng 348:111455. https://doi.org/10.1016/j.jfoodeng.2023.111455 [32] Yao T, Wang Y, Zhu B et al (2020) 4D printing and collaborative design of highly flexible shape memory alloy structures: a case study for a metallic robot prototype. Smart Mater Struct 30(1):015018. https://doi.org/10.1088/1361-665X/abcc0a [33] Tahouni Y, Krüger F, Poppinga S et al (2021) Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspir Biomim 16(5):055002. https://doi.org/10.1088/1748-3190/ac0c8e [34] El Magri A, Vaudreuil S, Ayad B et al (2023) Effect of printing parameters on tensile, thermal and structural properties of 3D-printed poly (ether ketone ketone) PEKK material using fused deposition modeling. J Appl Polym Sci 29(140):54078. https://doi.org/10.1002/app.54078 [35] Zeng S, Gao Y, Feng Y et al (2019) Programming the deformation of a temperature-driven bilayer structure in 4D printing. Smart Mater Struct 28(10):105031. https://doi.org/10.1088/1361-665X/ab39c9 [36] Zeng S, Gao Y, Tan J et al (2022) Self-assembly by 4D printing: design and fabrication of sequential self-folding. In: Proceedings of the ASME conference on smart materials, adaptive structures and intelligent systems, Vol 86274, p V001T03A005. https://doi.org/10.1115/SMASIS2022-89459 [37] Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11(3):233-255 [38] Zeng S, Gao Y, Qiu H et al (2022) Design, fabrication and application of self-spiraling pattern-driven 4D-printed actuator. Sci Rep 12:18874. https://doi.org/10.1038/s41598-022-23425-0 [39] Westbrook KK, Parakh V, Chung T et al (2010) Constitutive modeling of shape memory effects in semicrystalline polymers with stretch induced crystallization. J Eng Mater Technol 132(4):041010. https://doi.org/10.1115/1.4001964 |