1. Zhou L, Zhao YQ, Wang XD (2012) Study on development strategy of titanium alloy materials and application in China. Chemical Industry Press, Beijing 2. Çolak O (2014) Optimization of machining performance in highpressure assisted turning of Ti6Al4V alloy. Stroj Vestn-J Mech Eng 60(10):675-681 3. Chinchanikar S, Choudhury SK (2013) Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel:an optimization approach. Measurement 46:1572-1584 4. Amin AKMN, Ismail AF, Khairusshima MKN (2007) Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy-Ti-6Al-4V. J Mater Process Technol 192(5):147-158 5. Sun FJ, Qu SG, Pan YX et al (2015) Effects of cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools. Int J Adv Manuf Technol 79(1-4):351-360 6. Wu KZ, Chen YJ, Zhu DD et al (2005) Application of frictionreducing groove on insert with 3D chip-breaking groove. Tool Technol 39(5):53-55 7. Arulkirubakaran D, Senthilkumar V, Kumawat V (2016) Effect of micro-textured tools on machining of Ti-6Al-4V alloy:an experimental and numerical approach. Int J Refract Met Hard Mater 54:165-177 8. Li N, Chen YJ, Kong DD et al (2017) Experimental investigation with respect to the performance of deep submillimeter-scaled textured tools in dry turning titanium alloy Ti-6Al-4V. Appl Surf Sci 403:187-199 9. Pusavec F, Krajnik P, Kopac J (2010) Transitioning to sustainable production-Part I:application on machining technologies. J Clean Prod 18(2):174-184 10. Pusavec F, Krajnik P, Kopac J (2010) Transitioning to sustainable production-Part Ⅱ:evaluation of sustainable machining technologies. J Clean Prod 18(12):1211-1221 11. Malakooti B, Wang J, Tandler EC (1990) A sensor-based accelerated approach for multi-attribute machinability and tool life evaluation. Int J Prod Res 28(12):2373-2392 12. Subramanian M, Sakthivel M, Sooryaprakash K et al (2013) Optimization of end mill tool geometry parameters for Al7075-T6 machining operations based on vibration amplitude by response surface methodology. Measurement 46(10):4005-4022 13. Singh D, Rao PV (2007) Optimization of tool geometry and cutting parameters for hard turning. Mater Manuf Process 22(1):15-21 14. Ramana MV, Rao GKM, Rao DH (2014) Optimization and effect of process parameters on tool wear in turning of titanium alloy under different machining conditions. Int J Mater Mech Manuf 2(4):272-277 15. Yan JH, Li L (2013) Multi-objective optimization of milling parameters-the trade-offs between energy, production rate and cutting quality. J Clean Prod 52:462-471 16. Sarıkaya M, Güllü A (2015) Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod 91:347-357 17. Thepsonthi T, Özel T (2012) Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 63(9-12):903-914 18. Yi Q, Li CB, Tang Y et al (2015) Multi-objective parameter optimization of CNC machining for low carbon manufacturing. J Clean Prod 95:256-264 19. Nayak SK, Patro JK, Dewangan S et al (2014) Multi-objective optimization of machining parameters during dry turning of AISI 304 austenitic stainless steel using grey relational analysis. Procedia Mater Sci 6:701-708 20. Mia M, Khan MA, Rahman SS et al (2017) Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V. Int J Adv Manuf Technol 90(1-4):109-118 21. Mia M, Khan MA, Dhar NR (2017) Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool. Int J Adv Manuf Technol 93(1-4):975-991 22. Xiong LS, Yan XG, Zhang FR (2006) Fundamentals of mechanical manufacturing technology. Huazhong University of Science and Technology Press, Wuhan 23. Newman ST, Nassehi A, Asrai RI et al (2012) Energy efficient process planning for CNC machining. CIRP J Manuf Sci Technol 5(2):127-136 24. Mia M, Rifat A, Tanvir MF et al (2018) Multi-objective optimization of chip-tool interaction parameters using grey-Taguchi method in MQL-assisted turning. Measurement 129:156-166 25. Zhang TY, Owodunni O, Gao J (2015) Scenarios in multi-objective optimization of process parameters for sustainable machining. Procedia CIRP 26:373-378 26. Hanafi I, Khamlichi A, Cabrera FM et al (2012) Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. J Clean Prod 33:1-9 27. Bhushan RK (2013) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod 39:242-254 28. Lu HS, Chang CK, Hwang NC et al (2009) Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. J Mater Process Technol 209:3808-3817 29. Dubey AK, Yadava V (2008) Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Opt Lasers Eng 46(2):124-132 30. Ross PJ (1988) Taguchi techniques for quality engineering. McGraw-Hill, New York 31. Deng JL (1982) The course of grey system theory. Huazhong University of Science and Technology Press, Wuhan |