1. ISO/ASTM 52900:2015(E) Standard terminology for additive manufacturing. ASTM 2015 2. Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics:a review. J Ceram Sci Tech 5(4):245-260 3. Frazier WE (2014) Metal additive manufacturing:a review. J Mater Eng Perform 23(6):1917-1928 4. Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes:Ⅱ. materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21(3):250-261 5. Turner N, Strong B, Gold S (2014) A review of melt extrusion additive manufacturing processes:I. Process design and modeling. Rapid Prototyp J 20(3):192-204 6. Karunakaran KP, Alain Bernard, Suryakumar S et al (2012) Rapid manufacturing of metallic objects. Rapid Prototyp J 18(4):264-280 7. Lewis JA, Smay JE, Stuecker J et al (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599-3609 8. Gonzalez-Gutierrez J, Cano S, Schuschnigg S et al (2018) Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers:a review and future perspectives. Materials 11(5):840. https://doi.org/10.3390/ma11050840 9. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches:a critical review. Int J Adv Manuf Technol 83(1-4):389-405 10. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83(15):768-776 11. Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions. Mater Des 58:242-246 12. Bottini A, Boschetto L (2014) Accuracy prediction in fused deposition modeling. Int J Adv Manuf Technol 73(5-8):913-928 13. Ning F, Cong W, Qiu J et al (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369-378 14. Brünler R, Aibibu D, Wöltje M et al (2017) In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine. Mater Sci Eng C 76:810-817 15. xjet3d. com, XJet's system. Accessed on 06 Sept 2017 16. Miyanaji H, Zhang S, Lassell A et al (2016) Process development of porcelain ceramic material with binder jetting process for dental applications. JOM 68(3):831-841 17. King WE, Anderson AT, Ferencz RM et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):41304 18. Khoshnevis B, Zhang J (2015) Selective separation sintering (SSS) A new layer based additive manufacturing approach for metals and ceramics. In:AIAA SPACE conference and exposition 19. Gallo D, Biamino S, Fino P et al (2017) An overview of additive manufacturing of titanium components by directed energy deposition:microstructure and mechanical properties. Appl Sci 7(9):883. https://doi.org/10.3390/app7090883 20. Rane K, Cataldo S, Parenti P et al (2018) Rapid production of hollow SS316 profiles by extrusion based additive manufacturing. AIP Conf Proc 1960(1):140014. https://doi.org/10.1063/1.5035006 21. Stavropoulos P, Foteinopoulos P (2018) Modelling of additive manufacturing processes:a review and classification. Manuf Rev 5(2):1-26 22. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9-12):1147-1155 23. German RM (2008) PIM breaks the $1 bn barrier. Metal Powder Rep 63(3):8-10 24. Gonçalves A (2001) Metallic powder injection molding using low pressure. J Mater Process Technol 118(1-3):193-198 25. German RM, Bose A (1997) Injection molding of metals and ceramics. Princeton, Metals Powder Industries Federation 26. Jabbari A, Abrinia K (2018) Developing thixo-extrusion process for additive manufacturing of metals in semi-solid state. J Manuf Process 35:664-671 27. Tseng JW, Hsu CK (1999) Cracking defect and porosity evolution during thermal debinding in ceramic injection molding. Ceram Int 25(5):461-466 28. Finke S, Feenstra FK (2002) Solid freeform fabrication by extrusion and deposition of semi-solid alloys. J Mater Sci 37(15):3101-3106 29. Luo J, Qi LH, Zhong SY et al (2012) Printing solder droplets for micro devices packages using pneumatic drop-on-demand (DoD) technique. J Mater Process Technol 212(10):2066-2073 30. Zhong SY, Qi LH, Luo J et al (2014) Effect of process parameters on copper droplet ejecting by pneumatic drop-ondemand technology. J Mater Process Technol 214(12):3089-3097 31. Zhang D, Qi L, Luo J et al (2017) Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. Int J Mach Tools Manuf 116:18-24 32. Cesarano J (1998) A review of robocasting technology. In:MRS Proceedings 542:133. https://doi.org/10.1557/PROC-542-133 33. Slots C, Jensen MB, Ditzel N et al (2017) Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion. Dental Mater 43(9):198-208 34. Travitzky N, Bonet A, Dermeik B et al (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16:729-754 35. Houmard M, Fu Q, Genet M et al (2013) On the structural, mechanical, and biodegradation properties of HA/b-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101:1233-1242 36. Thomas A, Kolan KC, Leu MC et al (2017) Freeform extrusion fabrication of titanium fiber reinforced 13-93 bioactive glass scaffolds. J Mech Behav Biomed Mater 69:153-162 37. Wang J, Shaw LL, Cameron TB (2006) Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. J Am Ceram Soc 89(1):346-349 38. I. 3. Bioprinter, Accessed on 25 Sept 2017 39. Li JP, De Wijn JR, Van Blitterswijk CA et al (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping:preparation and in vitro experiment. Biomaterials 27(8):1223-1235 40. Sercombe TB, Schaffer GB, Lucia (1999) Freeform fabrication of functional aluminium prototypes using powder metallurgy. J Mater Sci 34(17):4245-4251 41. Grida I, Evans JRG (2003) Extrusion freeforming of ceramics through fine nozzles. J Eur Ceram Soc 23(5):629-635 42. Bellini A, Shor L, Guceri SI (2005) New developments in fused deposition modeling of ceramics. Rapid Prototyp J 11(4):214-220 43. Lu X, Lee Y, Yang S et al (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36-44 44. Lu X, Lee Y, Yang S et al (2009) Fine lattice structures fabricated by extrusion freeforming:process variables. J Mater Process Technol 209(10):4654-4661 45. Lu X, Lee Y, Yang S et al (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1-10 46. Jafari MA, Han W, Mohammadi F et al (2000) A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyp J 6(3):161-175 47. Wu G, Langrana NA, Sadanji R et al (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23(1):97-105 48. Vaidyanathan R, Walish J, Lombardi JL et al (2000) The extrusion freeforming of functional ceramic prototypes. JOM 52(12):34-37 49. Kalita SJ, Bose S, Hosick HL et al (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611-620 50.3devo. com, 3devo. com/next-filament-extruder/. Accessed on 13 Oct 2017 51. The Virtual Foundry. www. thevirtualfoundry. com/showcase/m0mau80bklzxkr50voo7gkvrdqzs38. Accessed on 12 Oct 2017 52. Li JB, Xie ZG, Zhang XH et al (2010) Study of metal powder extrusion and accumulating rapid prototyping. Key Eng Mater 443:81-86 53. Holshouser C, Newell C, Palas S et al (2013) Out of bounds additive manufacturing. Adv Mater Process 171(3):15-27 54. Annoni M, Giberti H, Strano M (2016) Feasibility study of an extrusion-based direct metal additive manufacturing technique. Proc Manuf 5:916-927 55. Ren LQ, Zhou XL, Song ZY et al (2017) Process parameter optimization of extrusion-based 3D metal printing utilizing PWLDPE-SA binder system. Materials 10(3):305. https://doi.org/10.3390/ma10030305 56. Gaub (2016) www. arburg. com/us/us/products-and-services/addi tive-manufacturing/freeformer-system. (Online). Accessed 04 June 2017 57. D Rotman (2017) Director. www. technologyreview. com/s/604088/the-3-d-printer-that-could-finally-change-manufactur ing/. (Film) 58. Tay BY, Loh NH, Tor SB et al (2009) Characterisation of micro gears produced by micro powder injection moulding. Powder Technol 188(3):179-182 59. Rane KK, Date PP (2014) Rheological investigation of MIM feedstocks for reducing frictional effects during injection moulding. Adv Mater Res 966-967:196-205 60. A. F3049-14 (2014) Standard guide for characterizing properties of metal powders used for additive manufacturing processes. ASTM International, West Conshohocken, PA 61. Thomas-Vielma P, Cervera A, Levenfeld B et al (2008) Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. J Eur Ceram Soc 28(4):763-771 62. Kiyota Y (1989) Patent US4867943 63. Kang H, Kitsomboonloha R, Jang J et al (2012) High-performance printed transistors realized using femtoliter gravureprinted sub-10 lm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers. Adv Mater 24(22):3065-3069 64. Maleksaeedi S, Eng H, Wiria FE et al (2014) Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. J Mater Process Technol 214(7):1301-1306 65. Asadi-Eydivand M, Solati-Hashjin M, Farzad A et al (2016) Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot Comput Integr Manuf 37:57-67 66. Gaytan SM, Cadena MA, Karim H et al (2015) Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int 41(5):6610-6619 67. Farzadi A, Waran V, Solati-Hashjin M et al (2015) Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering. Ceram Int 41(7):8320-8330 68. Vitorino N, Freitas C, Ribeiro MJ et al (2014) Extrusion of ceramic emulsions:plastic behavior. Appl Clay Sci 101:315-319 69. Kono T, Horata A, Kondo T (1997) Development of titanium and titanium alloy by metal injection molding process. J Jpn Soc Powder Metall 44:985-992 70. Wen G, Cao P, Gabbitas B et al (2013) Development and design of binder systems for titanium metal injection molding:an overview. Metall Mater Trans A 44(3):1530-1547 71. Ahn S, Park SJ, Lee S et al (2009) Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technol 193(2):162-169 72. Levenfeld B, Varez A, Torralba JM (2002) Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process. Metall Mater Trans A 33(6):1843-1851 73. Moballegh L, Morshedian J, Esfandeh M (2005) Copper injection molding using a thermoplastic binder based on paraffin wax. Mater Lett 59(22):2832-2837 74. Suri P, Atre SV, German RM et al (2003) Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock. Mater Sci Eng A 356(1):337-344 75. Bose A, Schuh CA, Tobia JC et al (2018) Traditional and additive manufacturing of a new tungsten heavy alloy alternative. Int J Refract Metals Hard Mater 73:22-28 76. Merz L, Rath S, Piotter V et al (2002) Feedstock development for micro powder injection molding. Microsyst Technol 8(2-3):129-132 77. Samuel I, Lin E (2001) Near-net-shape forming of zirconia optical sleeves by ceramics injection molding. Ceram Int 27(2):205-214 78. Yang WW, Yang KY, Hon MH (2003) Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater Chem Phys 78(2):416-424 79. Ani S, Muchtar SM, Muhamad A et al (2014) Binder removal via a two-stage debinding process for ceramic injection molding parts. Ceram Int 40(2):2819-2824 80. Burkhardt C, Freigassner P, Weber O et al (2016) Fused filament fabrication (FFF) of 316L green parts for the MIM process. In:Proceedings of the world PM2016 congress and exhibition, Hamburg, Germany, 9-13 Oct 2016 81. www. mixer. co. uk/en/product/zx-sigma-mixer-extruder. U. Winkworth Mixer Co. Accessed 04 May 2017 82. Hausnerová B (2011) Powder injection moulding-an alternative processing method for automotive items. In:new trends and development in automotive system engineering. InTech, pp 129-146 83. Peng F, Vogt BD, Cakmak M (2018) Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit Manuf 22:197-206 84. Northcutt LA, Orski SV, Migler KB et al (2018) Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer 154:182-187 85. Valkenaers H, Vogeler F, Voet A et al (2013) Screw extrusion based 3D printing, a novel additive manufacturing technology. In:International conference on competitive manufacturing (COMA) 86. Tseng JW, Liu CY, Yen YK et al (2018) Screw extrusion-based additive manufacturing of PEEK. Mater Des 140:209-221 87. Pachauri P, Hamiuddin M (2015) Optimization of injection moulding process parameters in MIM for impact toughness of sintered parts. Int J Adv Mater Metall Eng 1:1-11 88. Giberti H, Sbaglia L, Silvestri M (2017) Mechatronic design for an extrusion-based additive manufacturing machine. Machines 5(4):29. https://doi.org/10.3390/machines5040029 89. Rishi O (2013) Feed rate effects in freeform filament extrusion. Dissertation, Rochester Institute of Technology 90. Fiore E, Giberti H, Sbaglia L (2015) Dimensional synthesis of a 5-DoF parallel kinematic manipulator for a 3D printer. In:16th international conference on research and education in mechatronics (REM), Bochun Germany, 18-20 Nov 2015 91. Giberti H, Fiore E, Sbaglia L (2016) Kinematic synthesis of a new 3D printing solution. In:MATEC Web of conferences 92. Anzalone GC, Zhang CL, Wijnen B et al (2013) A low-cost open-source metal 3-D printer. IEEE Access 1:803-810 93. Giberti H, Sbaglia L, Urgo M (2017) A path planning algorithm for industrial processes under velocity constraints with an application to additive manufacturing. J Manuf Syst 43:160-167 94. Monzón MD, Gibson I, Benítez AN et al (2013) Process and material behavior modeling for a new design of micro-additive fused deposition. Int J Adv Manuf Technol 67(9-12):2717-2726 95. Oliveira RVB, Soldi V, Fredel MC et al (2005) Ceramic injection molding:influence of specimen dimensions and temperature on solven debinding kinetics. J Mater Process Technol 160(2):213-220 96. Royer A, Barrière T, Gelin JC (2016) Development and characterization of a metal injection molding bio sourced Inconel 718 feedstock based on polyhydroxyalkanoates. Metals 6(4):89. https://doi.org/10.3390/met6040089 97. Tandon R (2008) Metal injection moulding in encyclopedia of materials science and technology. Elsevier, Amsterdam, pp 5439-5442 98. Boljanovic V (2010) Powder metallurgy, in metal shaping processes:casting and molding, particulate processing, deformation processes, metal removal. Industrial Press Inc, New York, pp 75-106 99. Parenti P, Kuriakose S, Mussi V et al (2017) Green-state micromilling of AISI316L feedstock. In:World congress on micro and nano manufacturing, 27-30 Mar 2017 100. Parenti P, Cataldo S, Annoni M (2018) Shape deposition manufacturing of 316L parts via feedstock extrusion and green-state milling. Manuf Lett 18:6-11 101. A. F3091/F3091M-14 (2014) Standard specification for powder bed fusion of plastic materials, ASTM International, West Conshohocken, PA 102. A. F3122-14 (2014) Standard guide for evaluating mechanical properties of metal materials made via additive manufacturing processes, ASTM International, West Conshohocken, PA 103. Komineas G, Foteinopoulos P, Papacharalampopoulos A et al (2018) Build time estimation models in thermal extrusion additive manufacturing processes. Proc Manuf 21:647-654 104. Ghazanfari A, Li WB, Leu MC et al (2016) A novel extrusionbased additive manufacturing process for ceramic parts. In:26th annual international solid freeform fabrication symposium 105. Brenken B, Barocio E, Favaloro A et al (2019) Development and validation of extrusion deposition additive manufacturing process simulations. Addit Manuf 25:218-226 106. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing:a review. J Manuf Process 25:185-200 107. Faes M, Valkenaers H, Vogeler F et al (2015) Extrusion-based 3D printing of ceramic components. Proc CIRP 28:76-81 108. Bletzinger KU, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79(22-25):2053-2062 109. Gonzalez-Gutierrez J, Godec D, Guran R et al (2018) 3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts. Metalurgija 57:117-120 110. Moritz T, Partsch U, Ziesche S et al (2014) Additive manufacturing of ceramic components. Mater Process Annu Rep 15:28-31 111. Ghazanfari A, Li W, Leu M et al (2017) Mechanical characterization of parts produced by ceramic on-demand extrusion process. Int J Appl Ceram Technol 14(3):486-494 112. Li W, Ghazanfari A, McMillen D et al (2017) Fabricating ceramic components with water dissolvable support structures by the ceramic on-demand extrusion process. CIRP Ann Manuf Technol 66:225-228 113. Lieberwirth C, Harder A, Seitz H (2017) Extrusion based additive manufacturing of metals parts. J Mech Eng Autom 7:79-83 |