Advances in Manufacturing ›› 2022, Vol. 10 ›› Issue (1): 24-58.doi: 10.1007/s40436-021-00376-9
Omar Ahmed Mohamed1,2, Syed Hasan Masood3, Wei Xu1
收稿日期:
2020-12-23
修回日期:
2021-05-22
出版日期:
2022-03-25
发布日期:
2022-02-23
通讯作者:
Omar Ahmed Mohamed
E-mail:omar.ahmed.mohamed@outlook.com
Omar Ahmed Mohamed1,2, Syed Hasan Masood3, Wei Xu1
Received:
2020-12-23
Revised:
2021-05-22
Online:
2022-03-25
Published:
2022-02-23
Contact:
Omar Ahmed Mohamed
E-mail:omar.ahmed.mohamed@outlook.com
摘要: Selective laser melting (SLM) is a mainstream powder-bed fusion additive manufacturing (AM) process that creates a three-dimensional (3D) object using a high power laser to fuse fine particles of various metallic powders such as copper, tool steel, cobalt chrome, titanium, tungsten, aluminium and stainless steel. Over the past decade, SLM has received significant attention due to its capability in producing dense parts with superior mechanical properties. As a premier shape memory alloy, the nickel-titanium (NiTi) shape memory alloy is attractive for a variety of biomedical applications due to its superior mechanical properties, superelasticity, corrosion resistance and biocompatibility. This paper presents a comprehensive review of the recent progress in NiTi alloys produced by the SLM process, with a particular focus on the relationship between processing parameters, resultant microstructures and properties. Current research gaps, challenges and suggestions for future research are also addressed.
The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00376-9
Omar Ahmed Mohamed, Syed Hasan Masood, Wei Xu. Nickel-titanium shape memory alloys made by selective laser melting:a review on process optimisation[J]. Advances in Manufacturing, 2022, 10(1): 24-58.
Omar Ahmed Mohamed, Syed Hasan Masood, Wei Xu. Nickel-titanium shape memory alloys made by selective laser melting:a review on process optimisation[J]. Advances in Manufacturing, 2022, 10(1): 24-58.
1. Zhang LG, Fisher JP, Leong K (2015) 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine. Academic Press, Cambridge 2. Shih RH (2013) Parametric modeling with Creo Parametric 2.0. SDC Publications 3. Craeghs T, Clijsters S, Yasa E et al (2011) Online quality control of selective laser melting. Proceedings of the solid free form fabrication symposium. Austin, TX. pp 212-226 4. Mantovani D (2000) Shape memory alloys:properties and biomedical applications. JOM 52:36-44 5. Wang XB, Kustov S, Van Humbeeck J (2018) A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials 11(9):1683. https://doi.org/10.3390/ma11091683 6. Li C, Liu J, Guo Y (2016) Prediction of residual stress and part distortion in selective laser melting. Procedia CIRP 45:171-174 7. Bormann T, Müller B, Schinhammer M et al (2014) Microstructure of selective laser melted nickel-titanium. Mater Charact 94:189-202 8. Khoo ZX, Liu Y, An J et al (2018) A review of selective laser melted NiTi shape memory alloy. Materials 11(4):519. https://doi.org/10.3390/ma11040519 9. Ou SF, Peng BY, Chen YC et al (2018) Manufacturing and characterization of NiTi alloy with functional properties by selective laser melting. Metals 8(5):342. https://doi.org/10.3390/met8050342 10. Manakari V, Parande G, Gupta M (2016) Selective laser melting of magnesium and magnesium alloy powders:a review. Metals 7(1):2. https://doi.org/10.3390/met7010002 11. Van Humbeeck J (2001) Shape memory alloys:a material and a technology. Adv Eng Mater 3(11):837-850 12. Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials 2(3):790-832 13. Bogue R (2009) Shape-memory materials:a review of technology and applications. Assem Autom 29(3):214-219 14. Ma J, Franco B, Tapia G et al (2017) Spatial control of functional response in 4D-printed active metallic structures. Sci Rep 7:46707. https://doi.org/10.1038/srep46707 15. Wadood A (2016) Brief overview on nitinol as biomaterial. Adv Mater Sci Eng 2016:4173138. https://doi.org/10.1155/2016/4173138 16. Meier H, Haberland C, Frenzel J et al (2009) Selective laser melting of NiTi shape memory components. In:Innovative developments in design and manufacturing. CRC Press-Taylor & Francis Group, pp 251-256 17. Fernandes DJ, Peres RV, Mendes AM et al (2011) Understanding the shape-memory alloys used in orthodontics. Int Scholarly Res Notices 2011:132408. https://doi.org/10.5402/2011/132408 18. de Wild M, Meier F, Bormann T et al (2014) Damping of selective-laser-melted NiTi for medical implants. J Mater Eng Perform 23(7):2614-2619 19. Marattukalam JJ, Balla VK, Das M et al (2018) Effect of heat treatment on microstructure, corrosion, and shape memory characteristics of laser deposited NiTi alloy. J Alloy Compd 744:337-346 20. Saedi S, Turabi AS, Andani MT et al (2016) The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloy Compd 677:204-210 21. Yang Y, Zhan JB, Li B et al (2019) Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy. Materialia 6:100305. https://doi.org/10.1016/j.mtla.2019.100305 22. Haberland C, Elahinia M, Walker JM et al (2014) On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 23(10):104002. https://doi.org/10.1088/0964-1726/23/10/104002 23. Habijan T, Haberland C, Meier H et al (2013) The biocompatibility of dense and porous nickel-titanium produced by selective laser melting. Mater Sci Eng C 33(1):419-426 24. Andani MT, Moghaddam NS, Haberland C et al (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomaterialia 10(10):4058-4070 25. Zhao Y, Taya M, Kang Y et al (2005) Compression behavior of porous NiTi shape memory alloy. Acta Mater 53(2):337-343 26. Trevisan F, Calignano F, Aversa A et al (2018) Additive manufacturing of titanium alloys in the biomedical field:processes, properties and applications. J Appl Biomater Functional Mater 16(2):57-67 27. Wysocki B, Maj P, Sitek R et al (2017) Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl Sci 7(7):657. https://doi.org/10.3390/app7070657 28. Yilmaz OU, Adnan A (2016) Shaped metal deposition technique in additive manufacturing:a review. Proc Inst Mech Eng Part B:J Eng Manuf 230(10):1781-1798 29. Walker JM, Haberland C, Andani MT et al (2016) Process development and characterization of additively manufactured nickel-titanium shape memory parts. J Intell Mater Syst Struct 27(19):2653-2660 30. Dadbakhsh S, Speirs M, Van Humbeeck J et al (2016) Laser additive manufacturing of bulk and porous shape-memory NiTi alloys:from processes to potential biomedical applications. MRS Bull 41(10):765-774 31. Metel A, Stebulyanin M, Fedorov S et al (2019) Power density distribution for laser additive manufacturing (SLM):potential, fundamentals and advanced applications. Technologies 7(1):5. https://doi.org/10.3390/technologies7010005 32. Shishkovsky I, Yadroitsev I, Smurov IY (2013) Manufacturing three-dimensional nickel titanium articles using layer-by-layer laser-melting technology. Tech Phys Lett 39(12):1081-1084 33. Shishkovsky I, Yadroitsev I, Smurov I (2012) Direct selective laser melting of nitinol powder. Phys Procedia 39:447-454 34. Johansen K, Voggenreiter H, Eggeler G (1999) On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy. Mater Sci Eng A 273:410-414 35. Haberland C, Elahinia M, Walker J et al (2013) Additive manufacturing of shape memory devices and pseudoelastic components. ASME 2013 conference on smart materials, adaptive structures and intelligent systems, (American Society of Mechanical Engineers):V001T001A005-V001T001A005 36. Baker HL (2019) The development and processing of nickel titanium shape memory alloys containing palladium using selective laser melting. Dissertation, University of Birmingham 37. Haberland C (2012) Additive Verarbeitung von NiTi-Formgedächtniswerkstoffen mittels Selective-Laser-Melting. Shaker 38. Wang C, Tan XP, Du Z et al (2019) Additive manufacturing of NiTi shape memory alloys using pre-mixed powders. J Mater Process Technol 271:152-161 39. Dadbakhsh S, Speirs M, Kruth J et al (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16(9):1140-1146 40. Ren DC, Zhang HB, Liu YJ et al (2020) Microstructure and properties of equiatomic Ti-Ni alloy fabricated by selective laser melting. Mater Sci Eng A 771:138586 41. Dadbakhsh S, Speirs M, Kruth JP (2015) Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann 64(1):209-212 42. Li S, Hassanin H, Attallah MM (2016) The development of TiNi-based negative Poisson's ratio structure using selective laser melting. Acta Mater 105:75-83 43. Bache M (2003) A review of dwell sensitive fatigue in titanium alloys:the role of microstructure, texture and operating conditions. Int J Fatigue 25(9/11):1079-1087 44. Ebel T (2019) Metal injection molding (MIM) of titanium and titanium alloys. Handbook of metal injection molding. Elsevier. pp 431-460 45. Sutton AT, Kriewall CS, Leu MC et al (2017) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototy 12(1):3-29 46. Saunders M (2018) How process parameters drive successful metal AM part production. Metal AM 4(2):127-135 47. Walker JM (2014) Additive manufacturing towards the realization of porous and stiffness-tailored NiTi implants. Dissertation, University of Toledo 48. Domashenkova MDA, Smurova I, Smirnovb M et al (2017) Selective laser melting of NiTi powder. in Lasers in Manufacturing Conference, Munich, Germany 49. Ma C, Andani MT, Qin H et al (2017) Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J Mater Process Technol 249:433-440 50. Pyoun YS, Park JH, Cho IH et al (2009) A study on the ultrasonic nano crystal surface modification (UNSM) technology and it's application. Trans Korean Soc Mech Eng A 33(3):190-195 51. Firstov GS, Vitchev RG, Kumar H et al (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23(24):4863-4871 52. Zhao C, Liang H, Luo S et al (2020) The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting. J Alloys Compounds 817:153288. https://doi.org/10.1016/j.jallcom.2019.153288 53. Parry L, Ashcroft I, Bracket D et al (2015) Investigation of residual stresses in selective laser melting. Key Engineering Materials Trans Tech Publ pp 129-132 54. Khanlari K, Ramezani M, Kelly P (2018) 60NiTi:a review of recent research findings, potential for structural and mechanical applications, and areas of continued investigations. Trans Indian Inst Met 71(4):781-799 55. Saedi S, Turabi AS, Andani MT et al (2016) Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting. Smart Mater Struct 25(3):035005. https://doi.org/10.1088/0964-1726/25/3/035005 56. Frenzel J et al (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys. Acta Mater 90:213-231 57. Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5(10):701-711 58. Bormann T, Schumacher R, Müller B et al (2012) Tailoring selective laser melting process parameters for NiTi implants. J Mater Eng Perform 21(12):2519-2524 59. Wang XB, Speirs M, Kustov S et al (2018) Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect. Scripta Mater 146:246-250 60. Saedi S, Moghaddam NS, Amerinatanzi A et al (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552-560 61. Moghaddam NS (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9(1):41. https://doi.org/10.1038/s41598-018-36641-4 62. Song B, Dong S, Deng S et al (2014) Microstructure and tensile properties of iron parts fabricated by selective laser melting. Opt Laser Technol 56:451-460 63. Haider A, Hassan G, Kamran M (2018) Processing parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V. J Mater Eng Perform 27(8):4059-4068 64. Xiong W, Hao L, Li Y et al (2019) Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater Des 170:107697. https://doi.org/10.1016/j.matdes.2019.107697 65. Li J, Ren H, Liu C et al (2019) The effect of specific energy density on microstructure and corrosion resistance of CoCrMo alloy fabricated by laser metal deposition. Materials 12(8):1321. https://doi.org/10.3390/ma12081321 66. Debroy T, Wei HL, Zuback J et al (2018) Additive manufacturing of metallic components-process, structure and properties. Prog Mater Sci 92:112-224 67. Ma F, Wen G, Ping T et al (2011) Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall Mater Trans B 42(1):81-86 68. Xiong ZW, Li ZH, Sun Z et al (2019) Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol 35(10):120-124 69. Lu HZ, Yang C, Luo X et al (2019) Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng, A 763:138166. https://doi.org/10.1016/j.msea.2019.138166 70. Gan J, Duan L, Li F et al (2021) Effect of laser energy density on the evolution of Ni4Ti3 precipitate and property of NiTi shape memory alloys prepared by selective laser melting. J Alloy Compd 869:159338. https://doi.org/10.1016/j.jallcom.2021.159338 71. Moghaddam NS, Saghaian SE, Amerinatanzi A et al (2018) Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A 724:220-230 72. Haberland C, Meier H, Frenzel J (2012) On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting. ASME 2012 conference on smart materials, adaptive structures and intelligent systems, American Society of Mechanical Engineers Digital Collection, pp 97-104 73. Dadbakhsh S, Vrancken B, Kruth JP et al (2016) Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A 650:225-232 74. Bayati P, Jahadakbar A, Barati M et al (2020) Toward low and high cycle fatigue behavior of SLM-fabricated NiTi:considering the effect of build orientation and employing a self-heating approach. Int J Mech Sci 105878. https://doi.org/10.1016/j.ijmecsci.2020.105878 75. Meier H, Haberland C, Frenzel J (2011) Structural and functional properties of NiTi shape memory alloys produced by selective laser melting. Innovative developments in design and manufacturing:advanced research in virtual and rapid prototyping, pp 291-296 76. Eggeler G, Hornbogen E, Yawny A et al (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1/2):24-33 77. Speirs M, Van Hooreweder B, Van Humbeeck J et al (2017) Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater 70:53-59 78. Biffi CA, Bassani P, Nematollahi M et al (2019) Effect of ultrasonic nanocrystal surface modification on the microstructure and martensitic transformation of selective laser melted nitinol. Materials 12:3068. https://doi.org/10.3390/ma12193068 79. Khoo ZX, An J, Chua CK et al (2019) Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy. Materials 12(1):77. https://doi.org/10.3390/ma12010077 80. Fu J, Hu ZH, Song X et al (2020) Micro selective laser melting of NiTi shape memory alloy:defects, microstructures and thermal/mechanical properties. Optics Laser Technol 131:106374. https://doi.org/10.1016/j.optlastec.2020.106374 81. Elahinia M, Moghaddam NS, Andani MT et al (2016) Fabrication of NiTi through additive manufacturing:a review. Progress Mater Sci 83:630-663 82. Taheri AM, Haberland C, Walker JM (2016) Achieving biocompatible stiffness in NiTi through additive manufacturing. J Intell Mater Syst Struct 27(19):2661-2671 83. Saghaian AASE, Moghaddam NS, Majumdar A et al (2018) Mechanical and shape memory properties of triply periodic minimal surface (TPMS) NiTi structures fabricated by selective laser melting. Biol Eng Med 3(5):1-7 84. Moghaddam NS (2018) Influence of SLM on compressive response of NiTi scaffolds. Behavior and mechanics of multifunctional materials and composites XII, International Society for Optics and Photonics,105960H 85. Andani MT, Saedi S, Turabi AS et al (2017) Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater 68:224-231 |
[1] | Yong-Cheng Lin, Jiang-Shan Zhu, Jia-Yang Chen, Jun-Quan Wang. Residual-stress relaxation mechanism and model description of 5052H32 Al alloy spun ellipsoidal heads during annealing treatment[J]. Advances in Manufacturing, 2022, 10(1): 87-100. |
[2] | Xing-Sheng Yu, Chuan Wu, Ru-Xing Shi, Ya-Sha Yuan. Microstructural evolution and mechanical properties of 55NiCrMoV7 hot-work die steel during quenching and tempering treatments[J]. Advances in Manufacturing, 2021, 9(4): 520-537. |
[3] | Athul Joseph, Vinyas Mahesh, Dineshkumar Harursampath. On the application of additive manufacturing methods for auxetic structures: a review[J]. Advances in Manufacturing, 2021, 9(3): 342-368. |
[4] | E. Virgillito, A. Aversa, F. Calignano, M. Lombardi, D. Manfredi, D. Ugues, P. Fino. Failure mode analysis on compression of lattice structures with internal cooling channels produced by laser powder bed fusion[J]. Advances in Manufacturing, 2021, 9(3): 403-413. |
[5] | Jia-Yang Chen, Yong-Cheng Lin, Guo-Dong Pang, Xin-He Li. Effects of spinning parameters on microstructures of ellipsoidal heads during marginal-restraint mandrel-free spinning[J]. Advances in Manufacturing, 2020, 8(4): 457-472. |
[6] | Behrouz Bagheri, Mahmoud Abbasi. Development of AZ91/SiC surface composite by FSP: effect of vibration and process parameters on microstructure and mechanical characteristics[J]. Advances in Manufacturing, 2020, 8(1): 82-96. |
[7] | Wei-Jun Zhu, Guo-Qiang Tian, Yang Lu, Kai Miao, Di-Chen Li. Leaching improvement of ceramic cores for hollow turbine blades based on additive manufacturing[J]. Advances in Manufacturing, 2019, 7(4): 353-363. |
[8] | Dong-Dong Chen, Yong-Cheng Lin, Xiao-Min Chen. A strategy to control microstructures of a Ni-based superalloy during hot forging based on particle swarm optimization algorithm[J]. Advances in Manufacturing, 2019, 7(2): 238-247. |
[9] | Ze-Xing Su, Chao-Yang Sun, Ming-Wang Fu, Ling-Yun Qian. Physical-based constitutive model considering the microstructure evolution during hot working of AZ80 magnesium alloy[J]. Advances in Manufacturing, 2019, 7(1): 30-41. |
[10] | Qin-Xiang Xia, Jin-Chuan Long, Ning-Yuan Zhu, Gang-Feng Xiao. Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning[J]. Advances in Manufacturing, 2019, 7(1): 52-63. |
[11] | Saroj Kumar Padhi, S. S. Mahapatra, Rosalin Padhi, Harish Chandra Das. Performance analysis of a thick copper-electroplated FDM ABS plastic rapid tool EDM electrode[J]. Advances in Manufacturing, 2018, 6(4): 442-456. |
[12] | Jie Sun, Cheng Sheng, Ding-Pu Wang, Jing Zhao, Yun-Hu Zhang, Hong-Gang Zhong, Gui Wang, Qi-jie Zhai. Fine equiaxed dendritic structure of a medium carbon steel cast using pulsed magneto-oscillation melt treatment[J]. Advances in Manufacturing, 2018, 6(2): 189-194. |
[13] | Yu Dong, Jamie Milentis, Alokesh Pramanik. Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites[J]. Advances in Manufacturing, 2018, 6(1): 71-82. |
[14] | Jyotirmoy Nandy, Hrushikesh Sarangi, Seshadev Sahoo. Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase-field modeling[J]. Advances in Manufacturing, 2018, 6(1): 107-117. |
[15] | Jian-Xin Lin, Xu-Ming Liu, Chuan-Wei Cui, Chuan-Yi Bai, Yu-Ming Lu, Feng Fan, Yan-Qun Guo, Zhi-Yong Liu, Chuan-Bing Cai. A review of thickness-induced evolutions of microstructure and superconducting performance of REBa2Cu3O7-δ coated conductor[J]. Advances in Manufacturing, 2017, 5(2): 165-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn