Advances in Manufacturing ›› 2014, Vol. 2 ›› Issue (4): 358-368.doi: 10.1007/s40436-014-0086-x
Liu-Ming Yan1, Jun-Ming Su1, Chao Sun2, Bao-Hua Yue1
Received:
2014-05-16
Online:
2014-12-25
Published:
2014-12-25
Contact:
e-mail: liuming.yan@shu.edu.cn
About author:
e-mail: liuming.yan@shu.edu.cn
Liu-Ming Yan1, Jun-Ming Su1, Chao Sun2, Bao-Hua Yue1. Review of the first principles calculations and the design of cathode materials for Li-ion batteries[J]. Advances in Manufacturing, 2014, 2(4): 358-368.
1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–11942. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–1283. Eagar TW (1995) Bringing new materials to market. Technol Rev 98:42–494. Ceder G (2010) Opportunities and challenges for first-principles materials design and applications to Li battery materials. Mater Res Soc Bull 35:693–7015. Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem29:2044–20786. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–38687. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–61708. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functional based on a screened coulomb potential. J Chem Phys118:8207–82159. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:22410610. Meng YS, Arroyo-de Dompablo ME (2009) First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ Sci 2:589–60911. Meng YS, Arroyo-de Dompablo ME (2013) Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res 46:1171–118012. Hoang K, Johannes M (2011) Tailoring native defects in LiFe-PO4: insights from first-principles calculations. Chem Mater 23:3003–301313. Kuss C, Liang G, Schougaard SB (2012) Atomistic modeling of site exchange defects in lithium iron phosphate and iron phosphate. J Mater Chem 22:24889–2489314. Xu J, Chen G (2010) Effects of doping on the electronic properties of LiFePO4: a first-principles investigation. Phys B 405:803–80715. Lin ZP, Zhao YM, Zhao YJ (2011) First-principles studies of Mndoped LiCoPO4. Chin Phys B 20:018201–01820616. Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y, Ceder G (2012) Carbonophosphates: a new family of cathode materials for Li-ion batteries identified computationally. Chem Mater 24:2009–201617. Chen H, Hautier G, Ceder G (2012) Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. J Am Chem Soc 134:19619–1962718. Xu GG, Wu J, Chen ZG, Lin YB, Huang ZG (2012) Effect of C doping on the structural and electronic properties of LiFePO4: a first-principles investigation. Chin Phys B 21:09740119. Jain A, Hautier G, Moore C, Kang B, Lee J, Chen H, Twu N, Ceder G (2012) A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for Li ion batteries. J Electrochem Soc 159:A622–A63320. Koyama Y, Arai H, Tanaka I, Uchimoto Y, Ogumi Z (2012) Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations. Chem Mater 24:3886–389421. Aydinol MK, Kohan AF, Ceder G (1997) Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries. J Power Sour 68:664–66822. Xiao R, Li H, Chen L (2012) Density functional investigation on Li2MnO3. Chem Mater 24:4242–425123. Karim A, Fosse S, Persson KA (2013) Surface structure and equilibrium particle shape of the LiMn2O4 spinel from firstprinciples calculations. Phys Rev B 87:07532224. Hwang BJ, Tsai YW, Carlier D, Ceder G (2003) A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2.Chem Mater 15:3676–368225. Ling C, Mizuno F (2012) Capture lithium in a-MnO2: insights from first principles. Chem Mater 24:3943–395126. Kim Y, Kim D, Kang S (2011) Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides. Chem Mater 23:5388–539727. Marianetti CA, Morgan D, Ceder G (2001) First-principles investigation of the cooperative Jahn-Teller effect for octahedrally coordinated transition-metal ions. Phys Rev B 63:22430428. Liivat A (2012) Structural changes on cycling Li2FeSiO4 polymorphs from DFT calculations. Solid State Ion 228:19–2429. Seo D-H, Kim H, Park I, Hong J, Kang K (2011) Polymorphism and phase transformations of Li2-xFeSiO4 (0 B x B 2) from first principles. Phys Rev B 84:22010630. Kalantarian MM, Asgari S, Mustarelli P (2013) Theoretical investigation of Li2MnSiO4 as a cathode material for Li-ion batteries: a DFT study. J Mater Chem A 1:2847–285531. Seo DH, Park YU, Kim SW, Park I, Shakoor RA, Kang K (2011) First-principles study on lithium metal borate cathodes for lithium rechargeable batteries. Phys Rev B 83:20512732. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–18433. Godby RW, Garc′?a-Gonz′alez P (2003) A primer in density functional theory. Springer, Berlin, p 25634. Chan MKY, Ceder G (2010) Efficient band gap prediction for solids. Phys Rev Lett 105:19640335. Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA ? U framework. Phys Rev B 73:19510736. Rohrbach A, Hafner J, Kresse G (2003) Electronic correlation effects in transition-metal sulfides. J Phys 15:97937. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of stoner I. Phys Rev B 44:943–95438. Jain A, Hautier G, Ong SP, Moore CJ, Fischer CC, Persson KA, Ceder G (2011) Formation enthalpies by mixing GGA and GGA+ U calculations. Phys Rev B 84:04511539. Zheng X, Cohen AJ, Mori-Sa′nchez P, Hu X, Yang W (2011) Improving band gap prediction in density functional theory from molecules to solids. Phys Rev Lett 107:02640340. Ong SP, Wang L, Kang B, Ceder G (2008) LiFePO2 phase diagram from first principles calculations. Chem Mater 20:1798–180741. Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochem Commun 12:427–43042. Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 83:07511243. Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–487544. Tang XC, Pan CY, He LP, Li LQ, Chen ZZ (2004) A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: theories and experiments. Electrochim Acta 49:3113–311945. Tang XC, Li LX, Lai QL, Song XW, Jiang LH (2009) Investigation on diffusion behavior of Li? in LiFePO4 by capacity intermittent titration technique (CITT). Electrochim Acta 54:2329–233446. Tang XC, Song XW, Shen PZ, Jia DZ (2005) Capacity intermittent titration technique (CITT): a novel technique for determination of Li+ solid diffusion coefficient of LiMn2O4.Electrochim Acta 50:5581–558747. Montella C (2006) Comments of the paper ‘capacity intermittent titration technique (CITT). A novel technique for determination of Li? solid diffusion coefficient of LiMn2O4’ [X.-C. Tang, X.-W. Song, P.-Z. Shen, D.-Z. Jia, Electrochim. Acta 50 (2005) 5581–5587]. Electrochim Acta 51:2778–278148. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV (2010) Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim Acta 55:2939–295049. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering. Electrochim Acta 54:4631–463750. Tang SB, Lai MO, Lu L (2008) Li-ion diffusion in highly (0 3 3) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition. J Alloys Compd 449:300–30351. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion 148:45–5152. Chen J, Yan L, Yue B (2012) Nano-layered LiFePO4 particles converted from nano-layered ferrous phenylphosphonate templates. J Power Sour 209:7–1453. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G (2011) Calculations of Li-ion diffusion in olivine phosphates. Chem Mater 23:4032–403754. Hoang K, Johannes MD (2012) First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4. J Power Sour 206:274–28155. Liu Z, Huang X (2010) Factors that affect activation energy for Li diffusion in LiFePO4: a first-principles investigation. Solid State Ion 181:907–91356. Liu Z, Huang X (2012) Structural, electronic and Li diffusion properties of LiFeSO4F. Solid State Ion 181:1209–121357. Liu Z, Huang X, Wang D (2008) First-principle investigations of N doping in LiFePO4. Solid State Commun 147:505–50958. Sun C, Yan L, Yue B (2013) Improvement of surface structure and enhancement of conductivity of LiFePO4 surface by grapheme and graphene-like B—C—N coating. Acta Phys Chim Sin 29:1666–167259. Iddir H, Curtiss LA (2010) Li ion diffusion mechanisms in bulk monoclinic Li2CO3 crystals from density functional studies. J Phys Chem C 114:20903–2090660. Kang K, Morgan D, Ceder G (2009) First principles study of Li diffusion in I-Li2NiO2 structure. Phys Rev B 79:01430561. Lee S, Park SS (2012) Structure, defect chemistry, and lithium transport pathway of lithium transition metal pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): atomistic simulation study. Chem Mater 24:3550–355762. Lee S, Park SS (2012) Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery: structure, defect chemistry, lithium ion transport pathway, and dynamics. J Phys Chem C 116:25190–2519763. Adams S (2010) Lithium ion pathways in LiFePO4; and related olivines. J Solid State Electrochem 14:1787–179264. Yang J, Tse JS (2011) Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. J Phys Chem A 115:13045–1304965. Ouyang C, Shi S, Wang Z, Huang X, Chen L (2004) First-principles study of Li ion diffusion in LiFePO4. Phys Rev B 69:430366. Ouyang CY, Shi SQ, Wang ZX, Li H, Huang XJ, Chen LQ (2004) The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. J Phys 16:226567. Nishimura SI, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A (2008) Experimental visualization of lithium diffusion in LixFePO4. Nat Mater 7:707–71168. Clark JM, Nishimura SI, Yamada A, Islam MS (2012) Highvoltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. Angew Chem 51:13149–1315369. Velikokhatnyi OI, Choi D, Kumta PN (2006) Effect of boron on the stability of monoclinic NaMnO2: theoretical and experimental studies. Mater Sci Eng B 128:115–12470. Velikokhatnyi OI, Chang CC, Kumta PN (2004) Ab initio calculations and structural stability of boron-doped sodium manganese oxide. J Electrochem Soc 151:J8–J1371. Kim H, Kim DJ, Seo DH, Yeom MS, Kang K, Kim DK, Jung Y (2012) Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem Mater 24:1205–121172. Ramzan M, Lebegue S, Ahuja R (2009) Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries. Appl Phys Lett 94:15190473. Kim H, Park I, Seo DH, Lee S, Kim SW, Kwon WJ, Park YU, Kim CS, Jeon S, Kang K (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–1037274. Kim H, Shakoor RA, Park C, Lim SY, Kim JS, Jo YN, Cho W, Miyasaka K, Kahraman R, Jung Y et al (2013) Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater 23:1147–115575. Park CS, Kim H, Shakoor RA, Yang E, Lim SY, Kahraman R, Jung Y, Choi JW (2013) Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. J Am Chem Soc 135: 2787–279276. Shakoor RA, Seo DH, Kim H, Park YU, Kim J, Kim SW, Gwon H, Lee S, Kang K (2012) A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J Mater Chem 22:20535–2054177. Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50:2295–231078. Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S (2006) Data-mining-driven quantum mechanics for the prediction of structure. MRS Bull 31:981–98579. Hautier G, Fischer CC, Jain A, Mueller T, Ceder G (2010) Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem Mater 22: 3762–376780. Bennett JW (2012) Discovery and design of functional materials: integration of database searching and first principles calculations. Phys Proc 34:14–2381. Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G (2011) Data mined ionic substitutions for the discovery of new compounds. Inorg Chem 50:656–66382. Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G (2011) Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem 21:17147–1715383. Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem Mater 23:3495–350884. Mueller T, Hautier G, Jain A, Ceder G (2011) Evaluation of favorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem Mater 23:3854–386285. Ceder G, Aydinol MK, Kohan AF (1996) Application of firstprinciples calculations to the design of rechargeable Li-batteries. Comput Mater Sci 8:161–16986. Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392:694–69687. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–20188. Hautier G, Jain A, Ong S (2012) From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci 47:7317–734089. Ceder G, Hautier G, Jain A, Ong S (2011) Recharging lithium battery research with first-principles methods. MRS Bull 36:185–191 |
[1] | Lin Li, Hu Jiang. Application of thermodynamics in designing of advanced automotive steels [J]. Advances in Manufacturing, 2016, 4(4): 340-347. |
[2] | Jian-Bo Qi, Guang-Xin Wu, Jie-Yu Zhang. Mechanical properties of U-0.95 mass fraction of Ti alloy quenching and aging treatment: a first principles study [J]. Advances in Manufacturing, 2015, 3(3): 244-251. |
[3] | Wen-Cong Lu,Xiao-Bo Ji,Min-Jie Li,Liang Liu,Bao-Hua Yue,Liang-Miao Zhang. Using support vector machine for materials design [J]. Advances in Manufacturing, 2013, 1(2): 151-159. |
[4] | Shuang-Lin Chen,Wei-Sheng Cao,Fan Zhang, Chuan Zhang,Jun Zhu,Jie-Yu Zhang. Development of a computational tool for materials design [J]. Advances in Manufacturing, 2013, 1(1): 123-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn