1. Aich U, Banerjee S (2014) A simple procedure for searching pareto optimal front in machining process:electric discharge machining. Model Simul Eng. doi:10.1155/2014/594054
2. Krimpenis A, Vosniakos GC (2008) Rough milling optimisation for parts with sculptured surfaces using genetic algorithms in a Stackelberg game. J Intell Manuf 20(4):447-461
3. Kersting P, Zabel A (2009) Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multiobjective evolutionary algorithms. Adv Eng Softw 40(6):452-463
4. Fountas NA, Vaxevanidis NM, Stergiou CI et al (2014) Development of a software-automated intelligent sculptured surface machining optimization environment. Int J Adv Manuf Technol 75(5-8):909-931
5. Izui K, Yamada T, Nishiwaki S (2013) A gradient-based multiobjective optimization technique using an adaptive weighting method. In:The 10th world congress on structural and multidisciplinary optimization, USA, Orlando, pp 1-6
6. Seker S, Ö zgürler M, Tanyas M (2013) A Weighted multiobjective optimization method for mixed-model assembly line problem. J Appl Math. doi:10.1155/2013/531056
7. Ralphs TK, Saltzman MJ, Wiecek MM (2006) An improved algorithm for solving biobjective integer programs. Ann Oper Res 147:43-70
8. Kulscar G, Erdelyi F (2007) A new approach to solve multi objective scheduling and rescheduling tasks. Int J Comput Intell Res 2(4):343-351
9. Muralidhar A, Alwarsamy T (2013) Multi-objective optimization of parallel machine scheduling using neural networks. Int J Latest Trends Eng Technol 2(2):127-132
10. Kim IY, DeWeck O (2004) Adaptive weighted sum method for multiobjective optimization. Struct Multidisc Optim 31(2):105-116
11. Delcam®.http://www3.eng.cam.ac.uk/DesignOffice/cad/3rdyear/2014/week34/powermill_full_2014.pdf
12. Ross PJ (1996) Taguchi techniques for quality engineering. McGraw-Hill, New York
13. Kim IY, DeWeck O (2005) Adaptive weighted-sum method for bi-objective optimization:Pareto front generation. Struct Multidisc Optim 29:149-158
14. Fountas NA, Krimpenis AA, Vaxevanidis NM et al (2012) Single and multi-objective optimization methodologies in CNC machining. In:Davim JP (ed) Statistical and computational techniques in manufacturing. Springer, London, pp 187-218
15. López de Lacalle LN, Lamikiz A et al (2007) Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. Int J Mach Tools Manuf 47(2):388-400
16. Vaxevanidis NM, Galanis NI, Petropoulos GP et al (2010) Surface roughness analysis in high speed dry turning of a tool steel. In:Proceeding of the 10th biennial conf engineering systems design and analysis ASME, Istanbul, pp 551-557
17. Mausser H (2006) Normalization and other topics in multi-objective optimization. In:Proceeding of the MITACS industrial problems workshop, pp 89-101
18. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Longman Publishing Inc, Reading
19. Michalewicz Z, Janikow C (1991) Genetic algorithms for numerical optimization. Stat Comp 1(1):75-91
20. Fonseca CM, Fleming PJ (1997) Multi-objective optimization. In:Bäck T, Fogel D, Michalewicz Z (eds) Handbook of evolutionary computation. Oxford University Press, Oxford, pp 1-55
21. http://www.frezycnc.eu/end-mills-for-metal/general-purpose-endmills/end-mills-4-flute-short-osg-wxl-ems/. Accessed 18 April 2015
22. Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf Sci 210:81-88
23. Yildiz AR (2009) A novel particle swarm optimization approach for product design and manufacturing. Int J Adv Manuf Technol 40(5-6):617-628
24. Yildiz AR (2009) A novel hybrid immune algorithm for global optimization in design and manufacturing. Robot Comput Integr Manuf 25(2):261-270
25. Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433-1439
26. Yildiz AR (2013) A new hybrid bee colony optimization approach for robust optimal design and manufacturing. Appl Soft Comput 13(5):2906-2912
27. Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1-4):55-61
28. Yildiz AR (2009) Hybrid immune-simulated annealing algorithm for optimal design and manufacturing. Int J Mater Prod Technol 34(3):217-226
29. Yildiz AR (2009) An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. J Mater Process Technol 50(4):224-228
30. Yildiz AR (2013) Optimization of cutting parameters in multipass turning using artificial bee colony-based approach. Inf Sci 220:399-407
31. Yildiz AR (2013) A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl Soft Comput 13(3):1561-1566
32. Yildiz AR (2013) Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int J Adv Manuf Technol 66(9-12):1319-1326 |