1. Chae J, Park S, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46:313-332
2. Malekian M, Park SS, Jun MB (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209:4903-4914
3. Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J Ser A Solid Mech Mater Eng 42:546-559
4. Cheong WCD, Zhang LC (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation. Nanotechnology 11:173
5. Tang C, Zhang LC (2004) A molecular dynamics analysis of the mechanical effect of water on the deformation of silicon monocrystals subjected to nano-indentation. Nanotechnology 16:15
6. Kim D, Oh S (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17:2259
7. Minor AM, Asif SS, Shan Z et al (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5:697-702
8. Kim KJ, Yoon JH, Cho MH et al (2006) Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a R=5 (210) grain boundary. Mater Lett 60:3367-3372
9. Li J, Guo J, Luo H et al (2016) Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl Surf Sci 364:190-200
10. Szlufarska I, Kalia RK, Nakano A et al (2007) A molecular dynamics study of nanoindentation of amorphous silicon carbide. J Appl Phys 102:23509
11. Qiu C, Zhu P, Fang F et al (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci 305:101-110
12. Bei H, George EP, Hay J et al (2005) Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys Rev Lett 95:045501
13. Shih C, Yang M, Li J (1991) Effect of tip radius on nanoindentation. J Mater Res 6:2623-2628
14. Cheong WCD, Zhang LC, Tanaka H (2001) Some essentials of simulating nano-surfacing processes using the molecular dynamics method. In:Key Engineering Materials, Trans Tech Publ, 2001, pp. 31-42
15. Zhang LC, Cheong WCD (2003) Molecular dynamics simulation of phase transformations in monocrystalline silicon. High Press Surf Sci Eng 57:285
16. Cheong WCD, Zhang LC (2003) Monocrystalline silicon subjected to multi-asperity sliding:nano-wear mechanisms, subsurface damage and effect of asperity interaction. Int J Mater Prod Technol 18:398-407
17. Zhang LC, Johnson K, Cheong WCD (2001) A molecular dynamics study of scale effects on the friction of single-asperity contacts. Tribol Lett 10:23-28
18. Davis JR (1990) Properties and selection:nonferrous alloys and special-purpose materials. ASM Intl 2:1770
19. Pei Q, Lu C, Fang F, Wu H (2006) Nanometric cutting of copper:a molecular dynamics study. Comput Mater Sci 37:434-441
20. Komanduri R, Chandrasekaran N, Raff L (1999) Some aspects of machining with negative-rake tools simulating grinding:a molecular dynamics simulation approach. Philos Mag B 79:955-968
21. Han X (2006) Investigation micro-mechanism of dry polishing using molecular dynamics simulation method. In:1st IEEE international conference on nano/micro engineered and molecular systems 2006. NEMS'06, pp. 936-941
22. Komanduri R, Chandrasekaran N, Raff L (1998) Effect of tool geometry in nanometric cutting:a molecular dynamics simulation approach. Wear 219:84-97
23. Han X, Lin B, Yu S et al (2002) Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol 129:105-108
24. Komanduri R, Ch and Rasekaran N, Raff L (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 81:1989-2019
25. Zhao HW, Zhang L, Zhang P et al (2012) Influence of geometry in nanometric cutting single-crystal copper via MD simulation. Adv Mater Res 421:123-128
26. Fang F, Wu H, Zhou W et al (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407-410
27. Zhang LC, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis. Wear 211:44-53
28. Zhang LC, Tanaka H (1998) Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribol Int 31:425-433
29. Movahhedy M, Altintas Y, Gadala M (2002) Numerical analysis of metal cutting with chamfered and blunt tools. J Manuf Sci Eng 124:178-188
30. Komanduri R, Chandrasekaran N, Raff L (2000) MD Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting. Wear 242:60-88
31. Li J (1961) high-angle tilt boundary-a dislocation core model. J Appl Phys 32:525-541
32. Mylvaganam K, Zhang LC (2010) Effect of nano-scratching direction on the damage in monocrystalline silicon. In:Proceedings of the 6th Australasian congress on applied mechanics, Engineers Australia, p 757
33. Komanduri R, Chandrasekaran N, Raff L (2000) MD simulation of indentation and scratching of single crystal aluminum. Wear 240:113-143
34. Pei Q, Lu C, Lee H (2007) Large scale molecular dynamics study of nanometric machining of copper. Comput Mater Sci 41:177-185
35. Zhu YT, Langdon TG (2005) Influence of grain size on deformation mechanisms:an extension to nanocrystalline materials. Mater Sci Eng A 409:234-242
36. Van Swygenhoven H, Caro A, Farkas D (2001) A molecular dynamics study of polycrystalline FCC metals at the nanoscale:grain boundary structure and its influence on plastic deformation. Mater Sci Eng A 309:440-444
37. Qi Y, Krajewski PE (2007) Molecular dynamics simulations of grain boundary sliding:the effect of stress and boundary misorientation. Acta Mater 55:1555-1563
38. Zhang J, Hartmaier A, Wei Y et al (2013) Mechanisms of anisotropic friction in nanotwinned Cu revealed by atomistic simulations. Model Simul Mater Sci Eng 21:065001
39. Ye Y, Biswas R, Morris J et al (2003) Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14:390
40. Fang TH, Weng CI (2000) Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11:148
41. Zhu PZ, Hu YZ, Ma TB et al (2010) Study of AFM-based nanometric cutting process using molecular dynamics. Appl Surf Sci 256:7160-7165
42. Li J, Liu B, Luo H et al (2016) A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Comput Mater Sci 118:66-76
43. Chen J, Liang Y, Chen M et al (2012) Multi-path nanometric cutting of molecular dynamics simulation. J Comput Theor Nanosci 9:1303-1308
44. Oluwajobi A, Chen X (2012) Multi-pass nanometric machining simulation using the molecular dynamics (MD). Key Eng Mater 496:241-246
45. Cui DD, Zhang LC, Mylvaganam K et al (2015) Nano-milling on monocrystalline copper:a molecular dynamics simulation. Mach Sci Technol
46. Cui DD, Mylvaganam K, Zhang LC (2012) Atomic-scale grooving on copper:end-milling versus peripheral-milling. In:Advanced materials research, Trans Tech Publ, pp 546-551
47. Cui DD, Zhang LC, Mylvaganam K (2014) Nano-milling on copper:grooving quality and critical depth of cut. J Comput Theor Nanosci 11:964-970
48. Bao W, Tansel I (2000) Modeling micro-end-milling operations. Part I:analytical cutting force model. Int J Mach Tools Manuf 40:2155-2173
49. Wang Z, Jiao N, Tung S et al (2011) Atomic force microscopybased repeated machining theory for nanochannels on silicon oxide surfaces. Appl Surf Sci 257:3627-3631
50. Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J 42:546-559 |