1. Alexandria AR, Cortez PC, Felix JHS et al (2014) An OCR system for numerals applied to energy meters. IEEE Latin Am Trans 12(6):957-964
2. Deng CG, Xiang ZQ, Xie JC et al (2010) Design and study on marking system online for steel products. Comput Integr Manuf Syst 16(9):1859-1865
3. Agarwal K, Shivpuri R (2014) Knowledge discovery in steel bar rolling mills using scheduling data and automated inspection. J Intell Manuf 25(6):1289-1299
4. Jia HB, Murphey YL, Shi JJ (2004) An intelligent real-time vision system for surface defect detection. In: Proceedings of the 17th international conference on pattern recognition, Cambridge, UK, pp 239-242
5. Zhu JN, Mae Y, Minami M (2007) Finding and quantitative evaluation of minute flaws on metal surface using hairline. IEEE Trans Ind Electron 54(3):1420-1429
6. Bulnes FG, Usamentiaga R, Garcia DF (2011) Vision-based technique for periodical defect detection in hot steel strips. In: Proceedings of IEEE international conference on industry applications society annual meeting, Orlando, FL, pp 1-8
7. Choi SH, Yun JP, Sim SB (2010) Edge-based text localization and character segmentation algorithms for automatic slab information recognition. In: Proceedings of IEEE international conference on image analysis and signal processing, Zhejiang, China, pp 387-392
8. Bulnes FG, Usamentiaga R, Garcia DF (2011) Detection of periodical patterns in the defects identified by computer vision systems. In: Proceedings of IEEE international conference on intelligent systems design and applications, Cordoba, Spain, pp 301-306
9. Li P, Wu SB, Wang LN et al (2013) Automatic recognition system of plate character based on machine vision. Metall Ind Autom 37(4):12-15
10. Novak V, Hurtik P, Habiballa H et al (2014) Recognition of damaged letters based on mathematical fuzzy logic analysis. J Appl Logic 189(2):497-506
11. Mi ZZ, Xie ZJ, Liu Q (2016) Study of heavy rail mark recognition method based on PSO-SVM. Mod Sci Instrum 6:87-90
12. Zhao QJ, Cao P, Tu DW (2014) Toward intelligent manufacturing: label characters marking and recognition method for steel products with machine vision. Adv Manuf 2(1):3-12
13. Huang GB, Kae A, Doersch C et al (2012) Bounding the probability of error for high precision optical character recognition. J Mach Learn Res 13(1):363-387
14. Rico-Juan JR, Calvo-Zaragoza J (2014) Improving classification using a confidence matrix based on weak classifiers applied to OCR. Neurocomputing 151:1354-1361
15. Navarro-Cerdan JR, Arlandis J, Llobret R et al (2015) Batchadaptive rejection threshold estimation with application to OCR post-processing. Expert Syst Appl 42(21):8111-8122
16. Qiu Q, Li Z, Ahmed K et al (2016) A neuromorphic architecture for context aware text image recognition. J Signal Process Syst 84(3):1-15
17. Zhu A, Gao R, Uchida S (2016) Could scene context be beneficial for scene text detection? Pattern Recognit 58:204-215
18. Quehl B, Yang H, Sack H (2015) Improving text recognition by distinguishing scene and overlay text. In: Proceedings of SPIE the 7th international conference on machine vision. doi:10.1117/12. 2181370
19. Serrano N, Civera J, Sanchis A et al (2013) Effective balancing error and user effort in interactive handwriting recognition. Pattern Recognit Lett 37(1):135-142
20. Betta G, Capriglione D, Corvino M et al (2015) A proposal for the management of the measurement uncertainty in classification and recognition problems. IEEE Trans Instrum Meas 64(2): 392-402
21. Kim S, Yu Z, Kil RM et al (2015) Deep learning of support vector machines with class probability output networks. Neural Netw 64:19-28 |