1. Recht R (1964) Catastrophic thermoplastic shear. J Appl Mech 31:189-193
2. Komanduri R, Schroeder T (1984) On shear instability in machining a nickel-iron base superalloy. High Speed Mach 108:287-307
3. Barry J, Byrne G (2002) The mechanisms of chip formation in machining hardened steels. J Manuf Sci Eng 124(3):528-535
4. Gente A, Hoffmeister H, Evans C (2001) Chip formation in machining Ti6Al4V at extremely high cutting speeds. CIRP AnnManuf Techn 50(1):49-52
5. Davies M, Chou Y, Evans C (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. CIRP AnnManuf Techn 45(1):77-82
6. Shaw M, Vyas A (1998) The mechanism of chip formation with hard turning steel. CIRP Ann-Manuf Techn 47(1):77-82
7. Elbestawi M, Srivastava A, El-Wardany T (1996) A model for chip formation during machining of hardened steel. CIRP AnnManuf Techn 45(1):71-76
8. Su G, Liu Z (2010) An experimental study on influences of material brittleness on chip morphology. Int J Adv Manuf Technol 51(1-4):87-92
9. Poulachon G, Moisan A (2000) Hard turning:chip formation mechanisms and metallurgical aspects. J Manuf Sci Eng 122:406
10. Wang MJ, Duan CZ, Liu HB (2004) Experimental study on adiabatic shear behavior in chip formation during orthogonal cutting. China Mech Eng 15(18):1603-1606
11. Sowerby R, Chandrasekaran N (1989) A proposal for the onset of chip segmentation in machining. Mater Sci Eng, A 119:219-229
12. Marusich T, Ortiz M (1995) Modelling and simulation of highspeed machining. Int J Numer Meth Eng 38(21):3675-3694
13. Xie J, Bayoumi A, Zbib H (1996) A study on shear banding in chip formation of orthogonal machining. Int J Mach Tools Manuf 36(7):835-847
14. Guo Y, Yen D (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Tech 155:1350-1356
15. Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Tech 150(1-2):124-133
16. Gu L, Wang M, Duan C (2013) On adiabatic shear localized fracture during serrated chip evolution in high speed machining of hardened AISI 1045 steel. Int J Mech Sci 75:288-298
17. Gu L, Kang G, Chen H et al (2016) On adiabatic shear fracture in high-speed machining of martensitic precipitation-hardening stainless steel. J Mater Process Tech 234:208-216
18. Medyanik SN, Liu WK, Li S (2007) On criteria for dynamic adiabatic shear band propagation. J Mech Phys Solids 55(7):1439-1461
19. Liao SC, Duffy J (1998) Adiabatic shear bands in a Ti-6Al-4V titanium alloy. J Mech Phys Solids 46(11):2201-2231
20. Dodd B, Bai Y (1989) Width of adiabatic shear bands formed under combined stresses. Mater Sci Technol 5(6):557-559
21. Ö Zel T, Zeren E (2006) A methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machining. J Manuf Sci Eng 128:119-129
22. Gu L, Wang M, Chen H et al (2016) Experimental study on the process of adiabatic shear fracture in isolated segment formation in high-speed machining of hardened steel. Int J Adv Manuf Technol 86(1):671-679
23. Ye GG, Xue SF, Jiang MQ et al (2013) Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy. Int J Plast 40:39-55
24. Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of Ti6Al4V:experiments and modeling. Int J Plast 18(4):443-459
25. Li GH (2009) Prediction of diabatic shear in high speed machining based on linear pertubation analysis. Dalian University of Technology, Dalian
26. Zhou M, Rosakis A, Ravichandran G (1996) Dynamically propagating shear bands in impact-loaded prenotched plates I. Experimental investigations of temperature signatures and propagation speed. J Mech Phys Solids 44(6):981-1006
27. Murr L, Ramirez A, Gaytan S et al (2009) Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets. Mater Sci Eng A 516(1-2):205-216
28. Liu M, Guo Z, Fan C et al (2016) Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external high-strain-rate loading. Int J Solids Struct 97-98:336-354
29. Rittel D, Wang Z, Merzer M (2006) Adiabatic shear failure and dynamic stored energy of cold work. Phys Rev Lett 96(7):75502
30. Dolinski M, Merzer M, Rittel D (2015) Analytical formulation of a criterion for adiabatic shear failure. Int J Impact Eng 85:20-26 |