1. Wasif M, Chen ZC (2012) Cutter radius and blade angle selection model for the high speed face milling of hypoid gear. In:International conference on virtual machining process technology (VMPT 2012), May 28 to June 1, Montreal, Canada, 2012 2. Wasif M, Chen ZC (2016) An accurate approach to determine the cutting system for the face milling of hypoid gears. Int J Adv Manuf Technol 84(9-12):1873-1888 3. Wasif M, Chen ZC, Hasan SM (2016) Determination of cutterhead geometry for the face-milling of hypoid gears. Int J Adv Manuf Technol 86(9):3081-3090 4. Xie S (2013) A genuine face milling cutter geometric model for spiral bevel and hypoid gears. Int J Adv Manuf Technol 67(9-12):2619-2626 5. Litvin FL, Gutman Y (1981) Method of synthesis and analysis for hypoid gear-drives of "Formate" and "Helixform"; Part 1-3. J Mech Des 103:83-113 6. AGMA/ANSI (2005) Manual for the spiral bevel gears 7. Huston RL, Coy JJ (1982) Surface geometry of circular cut spiral bevel gears. J Mech Des 104:743-748 8. Fong ZH, Tsay C (1991) A mathematical model for the tooth geometry of circular-cut spiral bevel gears. J Mech Des 113:174-181 9. Litvin FL, Zhang Y, Lundy M et al (1988) Determination of settings of a tilted head cutter for generation of hypoid and spiral bevel gears. J Mech Des 110:495-500 10. Litvin FL, Wang AG, Handschuh RF (1996) Computerized design and analysis of face-milled, uniform tooth height spiral bevel gear drives. J Mech Des 118:573-579 11. Litvin FL, Wang AG, Handschuh RF (1998) Computerized generation and simulation of meshing and contact of spiral bevel gears with improved geometry. Comput Methods Appl Mech Eng 158:35-64 12. Litvin FL, Alfonso F, Fan Q et al (2002) Computerized design, simulation of meshing, and contact and stress analysis of facemilled formate generated spiral bevel gears. Mech Mach Theory 37:441-459 13. Litvin FL, Fuentes A, Hayasaka K (2006) Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mech Mach Theory 41:83-118 14. Stadtfeld H (2000) The ultimate motion graph. J Mech Des 122:317-322 15. Argyris J, Fuentes A, Litvin FL (2002) Computerized integrated approach for design and stress analysis of spiral bevel gears. Comput Methods Appl Mech Eng 191:1057-1095 16. Fuentes A, Litvin FL, Mullins BR et al (2002) Design and stress analysis of low-noise adjusted bearing contact spiral bevel gears. J Mech Des 124:524-532 17. Simon V (2001) Optimal machine tool setting for hypoid gears improving load distribution. J Mech Des 123:577-582 18. Simon V (2005) Optimal tooth modifications in hypoid gears. J Mech Des 127:646-655 19. Simon V (2008) Machine-tool settings to reduce the sensitivity of spiral bevel gears to tooth errors and misalignments. J Mech Design 130:082603-1-082603-10 20. Fan Q (2006) Computerized modeling and simulation of spiral bevel and hypoid gears manufactured by Gleason face hobbing process. J Mech Des 128:1315-1327 21. Fan Q (2007) Enhanced algorithms of contact simulation for hypoid gear drives produced by face-milling and face-hobbing processes. J Mech Des 129:31-37 22. Shih YP, Fong ZH (2007) Flank modification methodology for face-hobbing hypoid gears based on ease-off topology. J Mech Des 129:1294-1302 23. Vimercati M (2007) Mathematical model for tooth surfaces representation of face-hobbed hypoid gears and its application to contact analysis and stress calculation. Mech Mach Theory 42:668-690 24. Artoni A, Gabiccini M, Guiggiani M (2008) Nonlinear identification of machine setting for flank from modifications in hypoid gears. J Mech Des 130:112602-1-112602-8 25. Shih YP, Fong ZH (2008) Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoid generator. J Mech Des 130:062604-1-062604-11 26. Simon V (2010) Advanced manufacture of spiral bevel gears on CNC hypoid generating machine. J Mech Des 132:031001- 1-031001-8 27. Fan Q (2010) Tooth surface error correction for face-hobbed hypoid gears. J Mech Des 132:011004-1-011004-8 28. Fuentes A, Orzaez R, Perez I (2018) Computational approach to design face-milled spiral bevel gear drives with favorable conditions of meshing and contact. Meccanica 53(10):2669-2686 29. Wang Q, Zhou C, Gui L et al (2018) Optimization of the loaded contact pattern of spiral bevel and hypoid gears based on a kriging model. Mech Mach Theory 122:432-449 30. Han D, Zhigang W, Yuansheng Z et al (2018) A data-driven programming of the human-computer interactions for modeling a collaborative manufacturing system of hypoid gears by considering both geometric and physical performances. Robot Comput Integr Manuf 51:121-138 31. Ding H, Tang J (2018) Six sigma robust multi-objective optimization modification of machine-tool settings for hypoid gears by considering both geometric and physical performances. Appl Soft Comput 70:550-561 32. Ding H, Tang J, Zhong J et al (2016) A hybrid modification approach of machine-tool setting considering high tooth contact performance in spiral bevel and hypoid gears. J Manuf Syst 41:228-238 33. Ding H, Tang J, Zhou Y et al (2017) A multi-objective correction of machine settings considering loaded tooth contact performance in spiral bevel gears by nonlinear interval number optimization. Mech Mach Theory 113:85-108 34. Ding H, Tang J, Shao W et al (2017) Optimal modification of tooth flank form error considering measurement and compensation of cutter geometric errors for spiral bevel and hypoid gears. Mech Mach Theory 118:14-31 35. Ding H, Tang J, Zhong J (2016) An accurate model of highperformance manufacturing spiral bevel and hypoid gears based on machine setting modification. J Manuf Syst 41:111-119 36. Ding H, Wan G, Zhou Y et al (2017) Nonlinearity analysis based algorithm for indentifying machine settings in the tooth flank topography correction for hypoid gears. Mech Mach Theory 113:1-21 37. Arulmozhi P, Chandrasekaran M, Ramesh R (2017) A review of gear parameters optimization. Int J Eng Trends Technol 49(2):92-98 38. Zhou Y, Chen ZC (2015) A new geometric meshing theory for a closed-form vectorrepresentation of the face-milled generated gear tooth surface and its curvature analysis. Mech Mach Theory 83:98-108 39. Zhou Y, Peng S, Liu X et al (2018) A novel method to generate the tooth surface model of face-milled generated spiral bevel gears. Int J Adv Manuf Technol 102:1205-1214 40. Habibi M, Chen ZC (2016) A semi-analytical approach to undeformed chip boundary theory and cutting force prediction in face-hobbing of bevel gears. Comput Aided Des 73:53-65 41. Habibi M, Chen ZC (2015) A new approach to blade design with constant rake and relief angles for face-hobbing of bevel gears. J Manuf Sci Eng 138(3):031005 42. Habibi M, Chen ZC (2016) An accurate and efficient approach to undeformed chip geometry in face-hobbing and its application in cutting force prediction. J Manuf Sci Eng 138(2):023302 43. Chen ZC, Wasif M (2015) A generic and theoretical approach to programming and post-processing for hypoid gear machining on multi-axis CNC face-milling machines. Int J Adv Manuf Technol 81(1):135-148 44. Rababah M, Wasif M, Ahmed A et al (2018) Accurate machinesettings for the face-milling of hypoid gears. Int Rev Mech Eng 11(12):931-944 |