Advances in Manufacturing ›› 2021, Vol. 9 ›› Issue (3): 342-368.doi: 10.1007/s40436-021-00357-y
Previous Articles Next Articles
Athul Joseph1, Vinyas Mahesh2, Dineshkumar Harursampath1
Received:
2020-11-17
Revised:
2021-03-02
Online:
2021-09-25
Published:
2021-09-13
Athul Joseph, Vinyas Mahesh, Dineshkumar Harursampath. On the application of additive manufacturing methods for auxetic structures: a review[J]. Advances in Manufacturing, 2021, 9(3): 342-368.
1. Lim TC (2015) Auxetic materials and structures. Springer, Singapore 2. Alderson A, Alderson KL (2007) Auxetic materials. J Aerosp Eng 221:565-575 3. Lakes R (1987) Foam structures with negative Poisson's ratio. Science 235:1038-1040 4. Yeganeh-Haeri A, Weidner DJ, Parise JB (1992) Elasticity of acristobalite:a silicon dioxide with a negative Poisson's ratio. Science 257(5070):650-652 5. Keskar NR, Chelikowsky JR (1992) Negative Poisson ratios in crystalline SiO2 from first-principles calculations. Nature 358:222-224 6. Anurag C, Anvesh CK, Harsha AS (2015) Auxetic materials. Int J Trends Eng Technol 5:156-160 7. Wang Z, Zulifqar A, Hu H (2016) Auxetic composites in aerospace engineering. In:Sohel R and Raul F (eds) Advanced composite materials for aerospace engineering:processing, properties and applications, Woodhead Publishing, pp 213-240 8. Wang Z (2019) Recent advances in novel metallic honeycomb structure. Compos Part B Eng 166:731-741 9. Grima JN, Gatt R, Farrugia PS et al (2005) Auxetic cellular materials and structures. In:Proceedings of the ASME aerospace division 2005, Orlando, FL(US), pp 489-495 10. Novak N, Vesenjak M, Ren Z (2016) Auxetic cellular materialsa review. J Mech Eng 62:485-493 11. Gaspar N, Smith CW, Evans KE (2003) Effect of heterogeneity on the elastic properties of auxetic materials. J Appl Phys 94:6143-6149 12. Dirrenberger J, Forest S, Jeulin D (2012) Elastoplasticity of auxetic materials. Comput Mater Sci 64:57-61 13. Baughman RH (2003) Avoiding the shrink. Nature 425:667 14. Mazaev AV, Ajeneza O, Shitikova MV (2020) Auxetics materials:classification, mechanical properties and applications. IOP Conf Ser Mater Sci Eng 747:012008. https://doi.org/10.1088/1757-899X/747/1/012008 15. Xu Y, Zhang H, Schlangen E et al (2020) Cementitious cellular composites with auxetic behavior. Cem Concr Compos 111:103624. https://doi.org/10.1016/j.cemconcomp.2020.103624 16. Dirrenberger J, Forest S, Jeulin D et al (2011) Homogenization of periodic auxetic materials. Procedia Eng 10:1847-1852 17. Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5:1052-1063 18. Evans KE, Alderson KL (2000) Auxetic materials:the positive side of being negative. Eng Sci Educ J 9:148-154 19. Evans KE, Alderson A (2000) Auxetic materials:functional materials and structures from lateral thinking! Adv Mater 12:617-628 20. Wieding J, Fritsche A, Heinl P et al (2013) Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions. J Appl Biomater Funct Mater 11:159-166 21. Hou X, Hu H, Silberschmidt V (2012) A novel concept to develop composite structures with isotropic negative Poisson's ratio:effects of random inclusions. Compos Sci Technol 72:1848-1854 22. Carneiro VH, Meireles J, Puga H (2013) Auxetic materials-a review. Mater Sci Pol 31:561-571 23. Papadopoulou A, Laucks J, Tibbits S (2017) Auxetic materials in design and architecture. Nat Rev Mater 2:1-3 24. Mistry D, Connell SD, Mickthwaite SL et al (2018) Coincident molecular auxeticity and negative order parameter in a liquid crystal elastomer. Nat Commun 9:1-9 25. Saxena KK, Das R, Calius EP (2016) Three decades of auxetics research-materials with negative Poisson's ratio:a review. Adv Eng Mater 18:1847-1870 26. Ren X, Shen J, Ghaedizadeh A et al (2015) Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater Struct 24:095016. https://doi.org/10.1088/0964-1726/24/9/095016 27. Valente J, Plum E, Youngs IJ et al (2016) Nano- and microauxetic plasmonic materials. Adv Mater 28:5176-5180 28. Grima JN (2000) New auxetic mater. https://doi.org/10.1155/2014/753496 29. Yang W, Li ZM, Shi W et al (2004) Review on auxetic materials. J Mater Sci 39:3269-3279 30. Grima JN, Gatt R, Alderson A et al (2005) On the origin of auxetic behaviour in the silicate a-cristobalite. J Mater Chem 15:4003-4005 31. Prawoto Y (2012) Seeing auxetic materials from the mechanics point of view:a structural review on the negative Poisson's ratio. Comput Mater Sci 58:140-153 32. Ulissi ZW, Govind Rajan A, Strano MS (2016) Persistently auxetic materials:engineering the Poisson ratio of 2D selfavoiding membranes under conditions of non-zero anisotropic strain. ACS Nano 10:7542-7549 33. Scarpa F, Ciffo LG, Yates JR (2004) Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater Struct 13:49-56 34. Sloan MR, Wright JR, Evans KE (2011) The helical auxetic yarn-a novel structure for composites and textiles; geometry, manufacture and mechanical properties. Mech Mater 43:476-486 35. Critchley R, Corni I, Wharton JA et al (2013) A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys Status Solidi Basic Res 250:1963-1982 36. Li Y, Zeng C (2016) Room-temperature, near-instantaneous fabrication of auxetic materials with constant Poisson's ratio over large deformation. Adv Mater 28:2822-2826 37. Rossiter J, Takashima K, Scarpa F et al (2014) Shape memory polymer hexachiral auxetic structures with tunable stiffness. Smart Mater Struct 23:045007. https://doi.org/10.1088/0964-1726/23/4/045007 38. Alderson KL, Evans KE (1992) The fabrication of microporous polyethylene having a negative Poisson's ratio. Polymer 33:4435-4438 39. Mohsenizadeh S, Alipour R, Nejad AF et al (2015) Experimental investigation on energy absorption of auxetic foam-filled thin-walled square tubes under quasi-static loading. Procedia Manuf 2:331-336 40. Pichandi S, Rana S, Oliveira DV et al (2014) Development of novel auxetic structures based on braided composites. Mater Des 61:286-295 41. Yang L (2015) Experimental-assisted design development for an octahedral cellular structure using additive manufacturing. Rapid Prototyp J 21:168-176 42. Aslam MU, Darwish SM (2015) Development and analysis of different density auxetic cellular structures. Int J Recent Innov Trends Comput Commun 3:27-32 43. Biasetto L, Boschetti G, Minto R (2017) Robotic additive printing of cylindrical auxetic structures. Adv Ital Mech Sci 18:394-403 44. Wei K, Xiao X, Chen J et al (2021) Additively manufactured bimaterial metamaterial to program a wide range of thermal expansion. Mater Des 198:109343. https://doi.org/10.1016/j.matdes.2020.109343 45. Peng Y, Wei K, Mei M et al (2020) Simultaneously program thermal expansion and Poisson's ratio in three dimensional mechanical metamaterial. Compos Struct 262:113365. https://doi.org/10.1016/j.compstruct.2020.113365 46. Wei K, Peng Y, Qu Z et al (2018) A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio. Int J Solids Struct 150:255-267 47. Wei K, Xu W, Ling B et al (2021) Multi-functional cylindrical metastructures to simultaneously program both thermal expansion and Poisson's ratio. Extrem Mech Lett 43:101177. https://doi.org/10.1016/j.eml.2021.101177 48. Ding Y, Kovacevic R (2016) Feasibility study on 3-D printing of metallic structural materials with robotized laser-based metal additive manufacturing. JOM 68:1774-1779 49. D'Alessandro L, Zega V, Ardito R et al (2018) 3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci Rep 8:1-9 50. De Lima CR, Paulino GH (2019) Auxetic structure design using compliant mechanisms:a topology optimization approach with polygonal finite elements. Adv Eng Softw 129:69-80 51. Grimmelsmann N, Meissner H, Ehrmann A (2016) 3D printed auxetic forms on knitted fabrics for adjustable permeability and mechanical properties. IOP Conf Ser Mater Sci Eng 137:012011. https://doi.org/10.1088/1757-899X/137/1/012011 52. Yang L, Harrysson O, Cormier D et al (2015) Additive manufacturing of metal cellular structures:design and fabrication. JOM 67:608-615 53. McCaw JCS, Cuan-Urquizo E (2018) Curved-layered additive manufacturing of non-planar, parametric lattice structures. Mater Des 160:949-963 54. Meena K, Singamneni S (2019) A new auxetic structure with significantly reduced stress concentration effects. Mater Des 173:107779. https://doi.org/10.1016/j.matdes.2019.107779 55. Warner JJ, Gillies AR, Hwang HH et al (2017) 3D-printed biomaterials with regional auxetic properties. J Mech Behav Biomed Mater 76:145-152 56. Yao Y, Wang L, Li J et al (2020) A novel auxetic structure based bone screw design:tensile mechanical characterization and pullout fixation strength evaluation. Mater Des 188:108424. https://doi.org/10.1016/j.matdes.2019.108424 57. Gleadall A, Visscher D, Yang J et al (2018) Review of additive manufactured tissue engineering scaffolds:relationship between geometry and performance. Burn Trauma 6:1-16 58. Wong J, Gong AT, Defnet PA et al (2019) 3D Printing ionogel auxetic frameworks for stretchable sensors. Adv Mater Technol 4:1-6 59. Xue Y, Wang X, Wang W et al (2018) Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting. Mater Sci Eng A 722:255-262 60. Gao Y, Zhou Z, Hu H (2021) New concept of carbon fiber reinforced composite 3D auxetic lattice structures based on stretching-dominated cells. Mech Adv Mater Struct 152:103661. https://doi.org/10.1016/j.mechmat.2020.103661 61. Pandini S, Inverardi N, Scalet G et al (2020) Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures. Mech Res Commun 103:103463. https://doi.org/10.1016/j.mechrescom.2019.103463 62. Lei M, Hong W, Zhao Z et al (2019) 3D printing of auxetic metamaterials with digitally reprogrammable shape. ACS Appl Mater Interfaces 11:22768-22776 63. Wagner M, Chen T, Shea K (2017) Large shape transforming 4D auxetic structures. 3D Print Addit Manuf 4:133-141 64. Yousuf MH, Abuzaid W, Alkhader M (2020) 4D printed auxetic structures with tunable mechanical properties. Addit Manuf 35:101364. https://doi.org/10.1016/j.addma.2020.101364 65. Wu JT, Zhao Z, Kuang X et al (2018) Reversible shape change structures by grayscale pattern 4D printing. Multifunct Mater 1:015002. https://doi.org/10.1088/2399-7532/aac322 66. Wong KV, Hernandez A (2012) A review of additive manufacturing. Int Sch Res Notices 2012:208760. https://doi.org/10.5402/2012/208760 67. Brischetto S, Ferro CG, Torre R et al (2018) 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved Layer Struct 5:80-94 68. Carton MA, Ganter M (2019) Fast and simple printing of graded auxetic structures. In:Proceedings of the 30th annual international solid freeform fabrication symposium-an additive manufacturing conference, 12-14 August 2019, Austin, Texas, US, pp 2270-2279 69. Ingrole A, Hao A, Liang R (2017) Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des 117:72-83 70. Khondoker MAH, Sameoto D (2019) Direct coupling of fixed screw extruders using flexible heated hoses for FDM printing of extremely soft thermoplastic elastomers. Prog Addit Manuf 4:197-209 71. Li T, Chen Y, Hu X et al (2018) Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties. Mater Des 142:247-258 72. Lira C, Scarpa F, Rajasekaran R (2011) A gradient cellular core for aeroengine fan blades based on auxetic configurations. J Intell Mater Syst Struct 22:907-917 73. Smardzewski J, Wojciechowski KW, Poźniak A (2018) Auxetic lattice truss cores fabricated of laywood. BioResources 13:8823-8838 74. Wang XT, Chen YL, Ma L (2018) The manufacture and characterization of composite three-dimensional re-entrant auxetic cellular structures made from carbon fiber reinforced polymer. J Compos Mater 52:3265-3273 75. Wang T, Wang L, Ma Z et al (2018) Elastic analysis of auxetic cellular structure consisting of re-entrant hexagonal cells using a strain-based expansion homogenization method. Mater Des 160:284-293 76. Vyavahare S, Kumar S (2020) Re-entrant auxetic structures fabricated by fused deposition modeling:an experimental study of influence of process parameters under compressive loading. Polym Eng Sci 60:3183-3196 77. Yang C, Vora HD, Chang YB (2016) Evaluation of auxetic polymeric structures for use in protective pads. ASME Int Mech Eng Congr Expo Proc 9:1-7 78. Dziewit P, Platek P, Janiszewski J et al (2017) Mechanical response of additive manufactured regular cellular structures in quasi-static loading conditions-Part I experimental investigations. In:Proceedings of the 7th international conference on mechanics and materials in design. pp 1061-1074. 79. Ling B, Wei K, Wang Z et al (2020) Experimentally program large magnitude of Poisson's ratio in additively manufactured mechanical metamaterials. Int J Mech Sci 173:105466. https://doi.org/10.1016/j.ijmecsci.2020.105466 80. Ling B, Wei K, Qu Z et al (2021) Design and analysis for large magnitudes of programmable Poisson's ratio in a series of lightweight cylindrical metastructures. Int J Mech Sci 195:106220. https://doi.org/10.1016/j.ijmecsci.2020.106220 81. Bodaghi M, Serjouei A, Zolfagharian A et al (2020) Reversible energy absorbing meta-sandwiches by FDM 4D printing. Int J Mech Sci 173:105451. https://doi.org/10.1016/j.ijmecsci.2020.105451 82. Bodaghi M, Noroozi R, Zolfagharian A et al (2019) 4D printing self-morphing structures. Materials 12:1353. https://doi.org/10.3390/ma12081353 83. Lvov VA, Senatov FS, Stepashkin AA et al (2020) Low-cycle fatigue behavior of 3D-printed metallic auxetic structure. Mater Today Proc 33:1979-1983 84. Alomarah A, Zhang J, Ruan D et al (2017) Mechanical properties of the 2D re-entrant honeycomb made via direct metal printing. IOP Conf Ser Mater Sci Eng 229:012038. https://doi.org/10.1088/1757-899X/229/1/012038 85. Dong Z, Li Y, Zhao T et al (2019) Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb. Mater Des 182:108036. https://doi.org/10.1016/j.matdes.2019.108036 86. Khan SZ, Masood SH, Cottam R (2015) Mechanical properties in tensile loading of H13 re-entrant honeycomb auxetic structure manufactured by direct metal deposition. In:Proceedings of the 2nd international conference on mechatronics and mechanical engineering. Singapore, pp 23-25 87. Platek P, Sienkiewicz J, Janiszewski J et al (2020) Investigations on mechanical properties of lattice structures with different values of relative density made from 316L by selective laser melting (SLM). Materials 13:2204. https://doi.org/10.3390/ma13092204 88. Arjunan A, Singh M, Baroutaji A et al (2020) Additively manufactured AlSi10Mg inherently stable thin and thick-walled lattice with negative Poisson's ratio. Compos Struct 247:112469. https://doi.org/10.1016/j.compstruct.2020.112469 89. Lei H, Li C, Meng J et al (2019) Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and l-CT-based finite element analysis. Mater Des 169:107685. https://doi.org/10.1016/j.matdes.2019.107685 90. Xiong J, Gu D, Chen H et al (2017) Structural optimization of re-entrant negative Poisson's ratio structure fabricated by selective laser melting. Mater Des 120:307-316 91. Li S, Hassanin H, Attallah MM et al (2016) The development of TiNi-based negative Poisson's ratio structure using selective laser melting. Acta Mater 105:75-83 92. Kolken HMA, Janbaz S, Leeflang SMA et al (2018) Rationally designed meta-implants:a combination of auxetic and conventional meta-biomaterials. Mater Horizons 5:28-35 93. Maconachie T, Leary M, Lozanovski B et al (2019) SLM lattice structures:properties, performance, applications and challenges. Mater Des 183:108137. https://doi.org/10.1016/j.matdes.2019.108137 94. Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M et al (2018) Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater Des 144:32-44 95. Geng L, Wu W, Sun L et al (2019) Damage characterizations and simulation of selective laser melting fabricated 3D re-entrant lattices based on in-situ CT testing and geometric reconstruction. Int J Mech Sci 157/158:231-242 96. Sienkiewicz J, Płatek P, Jiang F et al (2020) Investigations on the mechanical response of gradient lattice structures manufactured via SLM. Metals 10:213. https://doi.org/10.3390/met10020213 97. Fíla T, Zlámal P, Jiroušek O et al (2017) Impact testing of polymer-filled auxetics using split Hopkinson pressure bar. Adv Eng Mater 19:1-13 98. Ma Y, Scarpa F, Zhang D et al (2013) A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Mater Struct 22:084012. https://doi.org/10.1088/0964-1726/22/8/084012 99. Smardzewski J, Kłos R, Fabisiak B (2013) Design of small auxetic springs for furniture. Mater Des 51:723-728 100. Theodoras T, Angelos C (2013) Choreographic architecture:inscribing instructions in an auxetic based material system. Simul Ser 45:102-109 101. Yang J, Sun Y, Lueth TC (2019) Construction of a production line for auxetic structures using novel modeling method. In:IEEE international conference on robotics and biomimetics, 6-8 December 2019, Dali, China, pp 1627-1632 102. Yuan S, Chua CK, Zhou K (2019) 3D-printed mechanical metamaterials with high energy absorption. Adv Mater Technol 4:1-9 103. Yuan S, Shen F, Bai J et al (2017) 3D soft auxetic lattice structures fabricated by selective laser sintering:TPU powder evaluation and process optimization. Mater Des 120:317-327 104. Tee KF, Spadoni A, Scarpa F et al (2010) Wave propagation in auxetic tetrachiral honeycombs. J Vib Acoust Trans 132:0310071. https://doi.org/10.1115/1.4000785 105. Wu W, Geng L, Niu Y et al (2018) Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils. Extrem Mech Lett 20:104-111 106. Yuan S (2017) Development and optimization of selective laser sintered-polymeric composites and structures for functional applications. Dissertation. Nanyang Technological University, Singapore 107. Eldesouky I, Harrysson O, West H (2017) Electron beam melted scaffolds for orthopedic applications. Addit Manuf 17:169-175 108. Gong X, Anderson T, Chou K (2014) Review on powder-based electron beam additive manufacturing technology. Manuf Rev 1:2-13 109. Horn TJ, Harrysson OLA, Marcellin-Little DJ et al (2014) Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting. Addit Manuf 1:2-11 110. Yang L, Harrysson OLA, West H et al (2011) Design and characterization of orthotropic re-entrant auxetic structures made via EBM using Ti6Al4V and pure copper. In:22nd annual international solid freeform fabrication symposium, 8-10 August 2011, University of Texas, Austin, TX, USA, pp 464-474 111. Yang L, Cormier D, West H et al (2012) Non-stochastic Ti-6Al-4V foam structures with negative Poisson's ratio. Mater Sci Eng A 558:579-585 112. Suard M, Lhuissier P, Dendievel R et al (2014) Towards stiffness prediction of cellular structures made by electron beam melting (EBM). Powder Metall 57:190-195 113. Yang L, Harrysson O, West H et al (2013) Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J Mater Sci 48:1413-1422 114. Mitschke H, Schwerdtfeger J, Schury F et al (2011) Finding auxetic frameworks in periodic tessellations. Adv Mater 23:2669-2674 115. Novak N, Krstulović-Opara L, Ren Z et al (2020) Compression and shear behaviour of graded chiral auxetic structures. Mech Mater 148:103524. https://doi.org/10.1016/j.mechmat.2020.103524 116. Novak N, Vesenjak M, Ren Z (2017) Computational simulation and optimization of functionally graded auxetic structures made from inverted tetrapods. Phys Status Solidi Basic Res 254:1-7 117. Novak N, Krstulović-Opara L, Ren Z et al (2020) Mechanical properties of hybrid metamaterial with auxetic chiral cellular structure and silicon filler. Compos Struct 234:111718. https://doi.org/10.1016/j.compstruct.2019.111718 118. Schwerdtfeger J, Heinl P, Singer RF et al (2010) Auxetic cellular structures through selective electron-beam melting. Phys Status Solidi Basic Res 247:269-272 119. Schwerdtfeger J, Schury F, Stingl M et al (2012) Mechanical characterisation of a periodic auxetic structure produced by SEBM. Phys Status Solidi Basic Res 249:1347-1352 120. Schwerdtfeger J, Wein F, Leugering G et al (2011) Design of auxetic structures via mathematical optimization. Adv Mater 23:2650-2654 121. Alomarah A, Ruan D, Masood S et al (2018) An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. Int J Adv Manuf Technol 96:2013-2029 122. Yu X, Zhou J, Liang H et al (2018) Mechanical metamaterials associated with stiffness, rigidity and compressibility:a brief review. Prog Mater Sci 94:114-173 123. Wang F (2018) Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains. J Mech Phys Solids 114:303-318 124. Berwind MF, Kamas A, Eberl C (2018) A hierarchical programmable mechanical metamaterial unit cell showing metastable shape memory. Adv Eng Mater 20:1-6 125. Gao Q, Liao WH, Wang L (2020) An analytical model of cylindrical double-arrowed honeycomb with negative Poisson's ratio. Int J Mech Sci 173:105400. https://doi.org/10.1016/j.ijmecsci.2019.105400 126. Gao S, Liu W, Zhang L (2020) A new polymer-based mechanical metamaterial with tailorable large negative Poisson's ratios. Polymers 12:1-15 127. Lantada AD, De Blas RA, Schwentenwein M et al (2016) Lithography-based ceramic manufacture (LCM) of auxetic structures:present capabilities and challenges. Smart Mater Struct 25:054015. https://doi.org/10.1088/0964-1726/25/5/054015 128. Lu Y, Chang CJ, Lin PT et al (2006) Negative-Poisson's-ratio (NPR) microstructural material by soft-joint mechanism. NSTI Nanotech 3:397-400 129. Munib Z, Ali MN, Ansari U et al (2015) Auxetic polymeric bone stent for tubular fractures:design, fabrication and structural analysis. Polym-Plast Technol Eng 54:1667-1678 130. Ruan XL, Li JJ, Song XK et al (2018) Mechanical design of antichiral-reentrant hybrid intravascular stent. Int J Appl Mech 10:1850105. https://doi.org/10.1142/S1758825118501053 131. Proffit M, Kennedy J (2020) Dynamic response of auxetic structures. Vibroeng Proc 31:1-6 132. Shaat M, Wagih A (2020) Hinged-3D metamaterials with giant and strain-independent Poisson's ratios. Sci Rep Nat Res 10:1-10 133. Gupta V, Adhikari S, Bhattacharya B (2020) Locally resonant mechanical dome metastructures for bandgap estimation. Proc Active Passive Smart Struct Integr Syst XIV:1137626. https://doi.org/10.1117/12.2558931 134. Wang S, Wang J, Xu Y et al (2020) Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing. Front Mech Eng 15:319-327 135. Yu L, Tan H, Zhou Z (2020) Mechanical properties of 3D auxetic closed-cell cellular structures. Int J Mech Sci 177:105596. https://doi.org/10.1016/j.ijmecsci.2020.105596 136. Hengsbach S, Lantada AD (2014) Direct laser writing of auxetic structures:present capabilities and challenges. Smart Mater Struct 23:085033. https://doi.org/10.1088/0964-1726/23/8/085033 137. Lee KS, Kim RH, Prabhakaran P et al (2007) Two-photon stereolithography. J Nonlinear Opt Phys Mater 16:59-73 138. Guney MG, Fedder GK (2016) Estimation of line dimensions in 3D direct laser writing lithography. J Micromech Microeng 26:105011. https://doi.org/10.1088/0960-1317/26/10/105011 139. Jayne RK, Stark TJ, Reeves JB et al (2018) Dynamic actuation of soft 3D micromechanical structures using micro-electromechanical systems (MEMS). Adv Mater Technol 3:1-6 140. Jonušauskas L, Varapnickas S, Rimšelis G et al (2017) Plasmonically enhanced 3D laser lithography for high-throughput nanoprecision fabrication. Proc Laser-Based Micro-Nanoprocess XI:10092. https://doi.org/10.1117/12.2249595 141. Lin Z, Novelino LS, Wei H et al (2020) Folding at the microscale:enabling multifunctional 3D origami-architected metamaterials. Small 16:1-9 142. Hou S, Li T, Jia Z et al (2018) Mechanical properties of sandwich composites with 3D-printed auxetic and non-auxetic lattice cores under low velocity impact. Mater Des 160:1305-1321 143. Khare E, Temple S, Tomov I et al (2018) Low fatigue dynamic auxetic lattices with 3D printable, multistable, and tuneable unit cells. Front Mater 5:1-11 144. Xue Y, Han F (2019) Compressive mechanical property of a new three-dimensional aluminum based double-V lattice structure. Mater Lett 254:99-102 145. Yang H, Wang B, Ma L (2019) Mechanical properties of 3D double-U auxetic structures. Int J Solids Struct 180/181:13-29 146. Auricchio F, Bacigalupo A, Gambarotta L et al (2019) A novel layered topology of auxetic materials based on the tetrachiral honeycomb microstructure. Mater Des 179:107883. https://doi.org/10.1016/j.matdes.2019.107883 147. Carneiro VH, Puga H (2018) Axisymmetric auxetics. Compos Struct 204:438-444 148. Chen Z, Wang Z, Zhou S et al (2018) Novel negative poisson's ratio lattice structures with enhanced stiffness and energy absorption capacity. Materials 11:1095. https://doi.org/10.3390/ma11071095 149. Fu MH, Bin ZB, Li WH (2017) A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters. Compos Struct 176:442-448 150. Hou Y, Neville R, Scarpa F et al (2014) Graded conventionalauxetic Kirigami sandwich structures:flatwise compression and edgewise loading. Compos Part B Eng 59:33-42 151. Jiang Y, Li Y (2017) 3D printed chiral cellular solids with amplified auxetic effects due to elevated internal rotation. Adv Eng Mater 19:1-8 152. Li X, Wang Q, Yang Z et al (2019) Novel auxetic structures with enhanced mechanical properties. Extrem Mech Lett 27:59-65 153. Lu ZX, Li X, Yang ZY et al (2016) Novel structure with negative Poisson's ratio and enhanced Young's modulus. Compos Struct 138:243-252 154. Lu Z, Wang Q, Li X, Yang Z (2017) Elastic properties of two novel auxetic 3D cellular structures. Int J Solids Struct 124:46-56 155. Meena K, Calius EP, Singamneni S (2019) An enhanced squaregrid structure for additive manufacturing and improved auxetic responses. Int J Mech Mater Des 15:413-426 156. Michalski J, Strek T (2019) Fatigue life of auxetic re-entrant honeycomb structure. In Gapiński B, Szostak M, Ivanov V (eds) Advances in Manufacturing II. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16943-5_5 157. Naboni R, Sartori S, Mirante L (2018) Adaptive-curvature structures with auxetic materials. Adv Mater Res 1149:53-63 158. Wang H, Zhang Y, Lin W et al (2020) A novel two-dimensional mechanical metamaterial with negative Poisson's ratio. Comput Mater Sci 171:109232. https://doi.org/10.1016/j.commatsci.2019.109232 159. Koudelka P, Jiroušek O, Fíla T et al (2016) Compressive properties of auxetic structures produced with direct 3D printing. Mater Tehnol 50:311-317 160. Lee W, Jeong Y, Yoo J et al (2019) Effect of auxetic structures on crash behavior of cylindrical tube. Compos Struct 208:836-846 161. Novak N, Borovinšek M, Vesenjak M et al (2019) Crushing behavior of graded auxetic structures built from inverted tetrapods under impact. Phys Status Solidi Basic Res 256:1-7 162. Novak N, Vesenjak M, Tanaka S et al (2020) Compressive behaviour of chiral auxetic cellular structures at different strain rates. Int J Impact Eng 141:103566. https://doi.org/10.1016/j.ijimpeng.2020.103566 163. Yang L, Harrysson O, West H et al (2012) Compressive properties of Ti-6Al-4V auxetic mesh structures made by electron beam melting. Acta Mater 60:3370-3379 164. Wang Q, Yang Z, Lu Z et al (2020) Mechanical responses of 3D cross-chiral auxetic materials under uniaxial compression. Mater Des 186:108226. https://doi.org/10.1016/j.matdes.2019.108226 165. Novak N, Hokamoto K, Vesenjak M et al (2018) Mechanical behaviour of auxetic cellular structures built from inverted tetrapods at high strain rates. Int J Impact Eng 122:83-90 166. Zhao Z, Yuan C, Lei M et al (2019) Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior. Phys Rev Appl 11:044074. https://doi.org/10.1103/PhysRevApplied.11.044074 167. Lozanovski B, Leary M, Tran P et al (2019) Computational modeling of strut defects in SLM manufactured lattice structures. Mater Des 171:107671. https://doi.org/10.1016/j.matdes.2019.107671 168. Hassanin H, Abena A, Elsayed MA et al (2020) 4D printing of NiTi auxetic structure with improved ballistic performance. Micromachines 11:1-19 169. Imbalzano G, Linforth S, Ngo TD et al (2018) Blast resistance of auxetic and honeycomb sandwich panels:comparisons and parametric designs. Compos Struct 183:242-261 170. Imbalzano G, Tran P, Ngo TD et al (2016) A numerical study of auxetic composite panels under blast loadings. Compos Struct 135:339-352 171. Liu J, Chen W, Hao H et al (2021) In-plane crushing behaviors of hexagonal honeycombs with different Poisson's ratio induced by topological diversity. Thin-Walled Struct 159:107223. https://doi.org/10.1016/j.tws.2020.107223 172. Shen J, Zhou S, Huang X et al (2015) Inertia effect on bucklinginduced auxetic metamaterials. Int J Prot Struct 6:311-322 173. Imbalzano G, Tran P, Lee PVS et al (2016) Influences of material and geometry in the performance of auxetic composite structure under blast Loading. Appl Mech Mater 846:476-481 174. Guo Y, Zhang J, Chen L et al (2020) Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp Sci Technol 98:105662. https://doi.org/10.1016/j.ast.2019.105662 175. Najafi M, Ahmadi H, Liaghat GH (2020) Experimental and numerical investigation of energy absorption in auxetic structures under quasi-static loading. Modares Mech Eng 20:415-424 176. Shepherd T, Winwood K, Venkatraman P et al (2020) Validation of a finite element modeling process for auxetic structures under impact. Phys Status Solidi Basic Res 257:1900197. https://doi.org/10.1002/pssb.201900197 177. Lim TC, Alderson A, Alderson KL (2014) Experimental studies on the impact properties of auxetic materials. Phys Status Solidi Basic Res 251:307-313 178. Sarbinowski F, Labudzki R, Patalas A (2018) A numerical and experimental study of the energy absorption capacity of auxetic structures. In:Proceedings of the 6th international conference integrity-reliability-failure, 22-26 July 2018, Lisbon, Portugal, pp 399-402 179. Shokri RM, Hatami H, Alipouri R et al (2019) Determination of energy absorption in different cellular auxetic structures. Mech Ind 20:15-20 180. Beharic A, Rodriguez Egui R, Yang L (2018) Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs. Mater Des 145:122-134 181. Ulbin M, Borovinšek M, Vesenjak M et al (2020) Computational fatigue analysis of auxetic cellular structures made of SLM AlSi10mg alloy. Metals 10(7):945. https://doi.org/10.3390/met10070945 182. Filho SLMR, Silva TAA, Brandão LC et al (2014) Failure analysis and Taguchi design of auxetic recycled rubber structures. Phys Status Solidi Basic Res 251:338-348 183. Filho SLMR, Silva TAA, Vieira LMG et al (2014) Geometric effects of sustainable auxetic structures integrating the particle swarm optimization and finite element method. Mater Res 17:747-757 184. Lvov VA, Senatov FS, Korsunsky AM et al (2020) Design and mechanical properties of 3D-printed auxetic honeycomb structure. Mater Today Commun 24:101173. https://doi.org/10.1016/j.mtcomm.2020.101173 185. Zhang J, Lu G, Wang Z et al (2018) Large deformation of an auxetic structure in tension:experiments and finite element analysis. Compos Struct 184:92-101 186. Geng LC, Ruan XL, Wu WW et al (2019) Mechanical properties of selective laser sintering (SLS) additive manufactured chiral auxetic cylindrical stent. Exp Mech 59:913-925 187. Gu L, Xu Q, Du Z (2020) Analysis of tensile behaviour of hyperelastic auxetic cellular materials with re-entrant hexagonal cells. J Text Inst 112:173-186 188. Dogan E, Bhusal A, Cecen B et al (2020) 3D printing metamaterials towards tissue engineering. Appl Mater Today 20:100752. https://doi.org/10.1016/j.apmt.2020.100752 189. Mardling P, Alderson A, Jordan-Mahy N et al (2020) The use of auxetic materials in tissue engineering. Biomater Sci 8:2074-2083 190. Abdelaal O, Darwish S (2012) Analysis, fabrication and a biomedical application of auxetic cellular structures. Int J Eng Innov Technol 2:218-223 191. Ali MN, Busfield JJC, Rehman IU (2014) Auxetic oesophageal stents:structure and mechanical properties. J Mater Sci Mater Med 25:527-553 192. Mir M, Ali MN, Sami J et al (2014) Review of mechanics and applications of auxetic structures. Adv Mater Sci Eng 2014:753496. https://doi.org/10.1155/2014/753496 193. Darwish SMH, Aslam MU (2014) Auxetic cellular structures for custom made orthopedic implants using additive manufacturing. Int J Eng Adv Technol 4:10-15 194. Mir M, Ali MN, Sami J et al (2014) Review of mechanics and applications of auxetic structures. Adv Mater Sci Eng 2014:1-17 195. Flamourakis G, Spanos I, Vangelatos Z et al (2020) Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications. Macromol Mater Eng 305:1-9 196. Lantada AD, Muslija A, Garcia-Ruiz JP (2015) Auxetic tissue engineering scaffolds with nanometric features and resonances in the megahertz range. Smart Mater Struct 24:055013. https://doi.org/10.1088/0964-1726/24/5/055013 197. Raminhos JS, Borges JP, Velhinho A (2019) Development of polymeric anepectic meshes:auxetic metamaterials with negative thermal expansion. Smart Mater Struct 28:045010. https://doi.org/10.1088/1361-665X/ab034b 198. Scarpa F (2008) Auxetic materials for bioprostheses. IEEE Signal Process Mag 25:10180273. https://doi.org/10.1109/MSP.2008.926663 199. Mohanraj H, Filho RSLM, Panzera TH et al (2016) Hybrid auxetic foam and perforated plate composites for human body support. Phys Status Solidi Basic Res 253:1378-1386. https://doi.org/10.1002/pssb.20160010 200. Arjunan A, Zahid S, Baroutaji A et al (2021) 3D printed auxetic nasopharyngeal swabs for COVID-19 sample collection. J Mech Behav Biomed Mater 114:104175. https://doi.org/10.1016/j.jmbbm.2020.104175 201. Duncan O, Shepherd T, Moroney C et al (2018) Review of auxetic materials for sports applications:expanding options in comfort and protection. Appl Sci 8(6):941. https://doi.org/10.3390/app8060941 202. Duncan O (2019) Auxetic foams for sports applications. Sheffield Hallam University. 203. Sanami M, Ravirala N, Alderson K et al (2014) Auxetic materials for sports applications. Procedia Eng 72:453-458 204. Hadjigeorgiou EP, Stavroulakis GE (2004) The use of auxetic materials in smart structures. Comput Methods Sci Technol 10:147-160 205. Han SC, Kang DS, Kang K (2019) Two nature-mimicking auxetic materials with potential for high energy absorption. Mater Today 26:30-39 206. Cheng Q, Liu Y, Lyu J et al (2020) 3D printing-directed auxetic Kevlar aerogel architectures with multiple functionalization options. J Mater Chem A 8:14243-14253 207. Shanian A, Jette FX, Salehii M et al (2019) Application of multifunctional mechanical metamaterials. Adv Eng Mater 21:1-6 208. Underhill RS (2014) Defence applications of auxetic materials. DSIAC J 1:7-13 209. Ngo T, Mohotti D, Remenikov A (2015) Use of polyurea-auxetic composite system for protecting structures from close-in detonations. In:Proceedings of the international conference of protective structures, pp 3-6 210. Mohotti D, Ali M, Ngo T et al (2014) Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading. Mater Des 53:830-837 211. Mohotti D, Ngo T, Mendis P et al (2013) Polyurea coated composite aluminium plates subjected to high velocity projectile impact. Mater Des 52:1-16 212. Mohotti D, Ngo T, Raman SN et al (2014) Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact. Mater Des 56:696-713 213. Rana S, Magalhães R, Fangueiro R (2017) Advanced auxetic fibrous structures and composites for industrial applications. In:Proceedings of the 7th international conference on mechanics and materials in design, 11-15 June 2017, Portugal 214. Seepersad CC, Dempsey BM, Allen JK et al (2004) Design of multifunctional honeycomb materials. AIAA J 42:1025-1033 215. Lim TC (2015) Thermal stresses in auxetic plates and shells. Mech Adv Mater Struct 22:205-212 216. Sun Y, Pugno NM (2013) In plane stiffness of multifunctional hierarchical honeycombs with negative Poisson's ratio substructures. Compos Struct 106:681-689 217. Yang L, Harrysson O, Cormier D et al (2013) Design of auxetic sandwich panels for structural applications. In:Proceedings of the 24th international SFF symposium, University of Texas at Austin (freeform), pp 929-938 218. Novak N, Dobnik Dubrovski P, Borovinšek M et al (2020) Deformation behaviour of advanced textile composites with auxetic structure. Compos Struct 252:1-9 219. Naboni R, Mirante L (2015) Metamaterial computation and fabrication of auxetic patterns for architecture 2:129-136 220. Elipe MDÁ, Díaz JA (2018) Development of reentrant hexatruss structures to apply to architecture. Rev La Constr 17:209-214 221. Kasal A, Kuskun T, Smardzewski J (2020) Experimental and numerical study on withdrawal strength of different types of auxetic dowels for furniture joints. Materials 13(19):4252. https://doi.org/10.3390/ma13194252 222. Iyer S, Alkhader M, Venkatesh TA (2015) Electromechanical behavior of auxetic piezoelectric cellular solids. Scr Mater 99:65-68 223. Jiang Y, Li Y (2018) 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Sci Rep 8:1-11 224. Le DH, Xu Y, Tentzeris MM et al (2020) Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response. Extrem Mech Lett 36:100670. https://doi.org/10.1016/j.eml.2020.100670 225. Wang Y, Yu Y, Li Z et al (2019) A novel electro-active bushing based on dielectric elastomer and circular double-V auxetic structure. AIP Adv 9:125109. https://doi.org/10.1063/1.5100017 226. Shakor P, Nejadi S, Paul G et al (2018) Review of emerging additive manufacturing technologies in 3D printing of cementitious materials in the construction industry. Front Built Environ 4:85. https://doi.org/10.3389/fbuil.2018.00085 227. Gibbons G (2010) 3D printing of cement composites. Adv Appl Ceram 109:287-290 228. De JJPJ, De Erik B (2013) Innovation lessons from 3-D printing. IEEE Eng Manage Rev 42:86-94 229. Chen L, He Y, Yang Y et al (2017) The research status and development trend of additive manufacturing technology. Int J Adv Manuf Technol 89:3651-3660 230. Sreenivasan R, Bourell DL (2009) Sustainability study in selective laser sintering-an energy perspective. In:Proceedings of the 20th annual solid freeform fabrication symposium, University of Texas at Austin (freeform), pp 257-265 231. Parupelli SK, Desai S (2019) A comprehensive review of additive manufacturing (3D printing):processes, applications and future potential. Am J Appl Sci 16:244-272 232. Zareiyan B, Khoshnevis B (2017) Automation in construction interlayer adhesion and strength of structures in contour crafting-effects of aggregate size, extrusion rate, and layer thickness. Autom Constr 81:112-121 233. Bourell DL (2016) Perspectives on additive manufacturing. Annu Rev Mater Res 46:1-18 234. Tran J (2015) The law and 3D printing. UIC J Inf Technol Priv Law. https://doi.org/10.2139/ssrn.2581775 |
[1] | Wei-Jun Zhu, Guo-Qiang Tian, Yang Lu, Kai Miao, Di-Chen Li. Leaching improvement of ceramic cores for hollow turbine blades based on additive manufacturing [J]. Advances in Manufacturing, 2019, 7(4): 353-363. |
[2] | Saroj Kumar Padhi, S. S. Mahapatra, Rosalin Padhi, Harish Chandra Das. Performance analysis of a thick copper-electroplated FDM ABS plastic rapid tool EDM electrode [J]. Advances in Manufacturing, 2018, 6(4): 442-456. |
[3] | Yu Dong, Jamie Milentis, Alokesh Pramanik. Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites [J]. Advances in Manufacturing, 2018, 6(1): 71-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn