1. Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. In:ASME 2004 international mechanical engineering congress and exposition, 13-19 November, Anaheim, California. https://doi.org/10.1115/IMECE2004-62600 2. Duflou JR, Sutherland JW, Dornfeld D et al (2012) Towards energy and resource efficient manufacturing:a processes and systems approach. CIRP Ann-Manuf Technol 61:587-609. https://doi.org/10.1016/j.cirp.2012.05.002 3. Liu N, Zhang YF, Lu WF (2019) Improving energy efficiency in discrete parts manufacturing system using an ultra-flexible job shop scheduling algorithm. Int J Precis Eng Manuf-Green Technol 6:349-365. https://doi.org/10.1007/s40684-019-00055-y 4. Avram OI, Xirouchakis P (2011) Evaluating the use phase energy requirements of a machine tool system. J Clean Prod 19:699-711. https://doi.org/10.1016/j.jclepro.2010.10.010 5. Mori M, Fujishima M, Inamasu Y et al (2011) A study on energy efficiency improvement for machine tools. CIRP Ann 60:145-148. https://doi.org/10.1016/j.cirp.2011.03.099 6. He Y, Liu F, Wu T et al (2012) Analysis and estimation of energy consumption for numerical control machining. Proc Inst Mech Eng Part B J Eng Manuf 226:255-266. https://doi.org/10.1177/0954405411417673 7. Balogun VA, Mativenga PT (2013) Modelling of direct energy requirements in mechanical machining processes. J Clean Prod 41:179-186. https://doi.org/10.1016/j.jclepro.2012.10.015 8. Sealy MP, Liu ZY, Zhang D et al (2016) Energy consumption and modeling in precision hard milling. J Clean Prod 135:1591-1601. https://doi.org/10.1016/j.jclepro.2015.10.094 9. Edem IF, Mativenga PT (2017) Modelling of energy demand from computer numerical control (CNC) toolpaths. J Clean Prod 157:310-321. https://doi.org/10.1016/j.jclepro.2017.04.096 10. Gutowski T, Dahmus J, Thiriez A et al (2007) A thermodynamic characterization of manufacturing processes. In:Proceedings of the 2007 IEEE international symposium on electronics and the environment, Orlando, FL, USA, 7-10 May 2007, pp 137-142 11. Li W, Kara S (2011) An empirical model for predicting energy consumption of manufacturing processes:a case of turning process. Proc Inst Mech Eng Part B J Eng Manuf 225:1636-1646. https://doi.org/10.1177/2041297511398541 12. Li L, Yan J, Xing Z (2013) Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. J Clean Prod 52:113-121. https://doi.org/10.1016/j.jclepro.2013.02.039 13. Liu N, Zhang YF, Lu WF (2015) A hybrid approach to energy consumption modelling based on cutting power:a milling case. J Clean Prod 104:264-272. https://doi.org/10.1016/j.jclepro.2015.05.049 14. Shi KN, Zhang DH, Liu N et al (2018) A novel energy consumption model for milling process considering tool wear progression. J Clean Prod 184:152-159. https://doi.org/10.1016/j.jclepro.2018.02.239 15. Shi KN, Ren JX, Wang SB et al (2019) An improved cutting power-based model for evaluating total energy consumption in general end milling process. J Clean Prod 231:1330-1341. https://doi.org/10.1016/J.JCLEPRO.2019.05.323 16. Wang Q, Zhang D, Tang K et al (2019) A mechanics based prediction model for tool wear and power consumption in drilling operations and its applications. J Clean Prod 234:171-184. https://doi.org/10.1016/j.jclepro.2019.06.148 17. Zhang X, Yu T, Dai Y et al (2020) Energy consumption considering tool wear and optimization of cutting parameters in micro milling process. Int J Mech Sci 178:105628. https://doi.org/10.1016/j.ijmecsci.2020.105628 18. Pang L, Hosseini A, Hussein HM et al (2015) Application of a new thick zone model to the cutting mechanics during end-milling. Int J Mech Sci 96/97:91-100. https://doi.org/10.1016/j.ijmecsci.2015.03.015 19. Sahoo P, Pratap T, Patra K (2019) A hybrid modelling approach towards prediction of cutting forces in micro end milling of Ti-6Al-4V titanium alloy. Int J Mech Sci 150:495-509. https://doi.org/10.1016/j.ijmecsci.2018.10.032 20. Totis G, Wirtz G, Sortino M et al (2010) Development of a dynamometer for measuring individual cutting edge forces in face milling. Mech Syst Signal Process 24:1844-1857. https://doi.org/10.1016/j.ymssp.2010.02.010 21. Jeong YH, Cho DW (2002) Estimating cutting force from rotating and stationary feed motor currents on a milling machine. Int J Mach Tools Manuf 42:1559-1566. https://doi.org/10.1016/S0890-6955(02)00082-2 22. Li X (2005) Development of current sensor for cutting force measurement in turning. IEEE Trans Instrum Meas 54:289-296. https://doi.org/10.1109/TIM.2004.840225 23. Kim D, Jeon D (2011) Fuzzy-logic control of cutting forces in CNC milling processes using motor currents as indirect force sensors. Precis Eng 35:143-152. https://doi.org/10.1016/j.precisioneng.2010.09.001 24. Aggarwal S, Nešić N, Xirouchakis P (2013) Cutting torque and tangential cutting force coefficient identification from spindle motor current. Int J Adv Manuf Technol 65:81-95. https://doi.org/10.1007/s00170-012-4152-x 25. Aslan D, Altintas Y (2018) Prediction of cutting forces in five-axis milling using feed drive current measurements. IEEE/ASME Trans Mechatronics 23:833-844. https://doi.org/10.1109/TMECH.2018.2804859 26. Qiu J (2018) Modeling of cutting force coefficients in cylindrical turning process based on power measurement. Int J Adv Manuf Technol 99:2283-2293. https://doi.org/10.1007/s00170-018-2610-9 27. Lu X, Wang F, Yang K et al (2019) An indirect method for the measurement of micro-milling forces. In:ASME 2019 14th international manufacturing science and engineering conference, West Lafayette, Indiana, USA, 4-7 October. https://doi.org/10.1115/MSEC2019-2769 28. Luo H, Du B, Huang GQ et al (2013) Hybrid flow shop scheduling considering machine electricity consumption cost. Int J Prod Econ 146:423-439. https://doi.org/10.1016/j.ijpe.2013.01.028 29. Ma F, Zhang H, Cao H et al (2017) An energy consumption optimization strategy for CNC milling. Int J Adv Manuf Technol 90:1715-1726. https://doi.org/10.1007/s00170-016-9497-0 30. Tian C, Zhou G, Zhang J et al (2019) Optimization of cutting parameters considering tool wear conditions in low-carbon manufacturing environment. J Clean Prod 226:706-719. https://doi.org/10.1016/j.jclepro.2019.04.113 31. Lee P, Altintas Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36:1059-1072. https://doi.org/10.1016/0890-6955(95)00081-X 32. Budak E, Altintaş Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118:216-224. https://doi.org/10.1115/1.2831014 33. Ma GH, Zhang YF, Nee AYC (2000) A simulated annealing-based optimization algorithm for process planning. Int J Prod Res 38:2671-2687. https://doi.org/10.1080/002075400411420 34. Liu N, Wang SB, Zhang YF et al (2016) A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. Int J Mech Sci 118:13-20. https://doi.org/10.1016/j.ijmecsci.2016.09.002 |