1. Beam AS (1954) Beveloid gearing. Mach Des 26:220-238 2. Mitome K (1985) Conical involute gear:part 3. Tooth action of a pair of gears. Bull JSME 28:2757-2764 3. Mitome K (1986) Inclining work-arbor taper hobbing of conical gear using cylindrical hob. J Mech Transm Autom Des 108:135-141 4. Mitome K (1993) Infeed grinding of straight conical involute gear. JSME Int J Ser C Dyn Control Robot Des Manuf 36:537-542 5. Li G, Jiang P, Cao B et al (2018) Generating grinding method of beveloid gears with conical worm wheel. Comput Integr Manuf Syst CIMS 24:1138-1146 6. Cao B, Li G (2019) Effect of installation errors on beveloid gears' precision ground by cone-shape worm wheel. Forsch Ing 83:727-739 7. Cao B, Li G (2021) Computerized design of plunge shaving tool for beveloid gears and plunge shaving characteristic analysis.Mech Mach Theory 161:104325. https://doi.org/10.1016/j.mechmachtheory.2021.104325 8. Komatsubara H, Mitome K, Ohmachi T (2002) Development of concave conical gear used for marine transmissions (1st Report, Principle of generating helical concave conical gear). JSME Int J Ser C 45:371-377 9. Liu C, Tsay C (2002) Mathematical models and contact simulations of concave beveloid gears. J Mech Des 124:753-760 10. Wu SH, Tsai SJ (2009) Geometrical design of skew conical involute gear drives in approximate line contact. Proc Inst Mech Eng C J Mech Eng Sci 223:2201-2211 11. Wu S, Tsai S (2009) Contact stress analysis of skew conical involute gear drives in approximate line contact. Mech Mach Theory 44:1658-1676 12. Liu C, Tsay C (2002) Contact characteristics of beveloid gears. Mech Mach Theory 37:333-350 13. Liu S, Song C, Zhu C et al (2018) Effects of tooth modifications on mesh characteristics of crossed beveloid gear pair with small shaft angle. Mech Mach Theory 119:142-160 14. Brecher C, Löpenhaus C, Brimmers J (2016) Function-oriented tolerancing of tooth flank modifications of beveloid gears. Procedia CIRP 43:124-129 15. Brecher C, Röthlingshöfer T, Gorgels C (2008) Manufacturing simulation of beveloid gears for the use in a general tooth contact analysis software. Prod Eng Res Devel 3:103-109 16. Xu Z, Kim J, Kim L et al (2015) Study on modular modeling and performance evaluation of a conical gear for marine transmission system. Int J Precis Eng Manuf 16:1123-1128 17. Dietz C, Wegener K, Thyssen W (2016) Continuous generating grinding:machine tool optimisation by coupled manufacturing simulation. J Manuf Process 23:211-221 18. Zhou W, Tang J, Chen H et al (2019) Modeling of tooth surface topography in continuous generating grinding based on measured topography of grinding worm. Mech Mach Theory 131:189-203 19. Wu Y, Hsu W (2014) A general mathematical model for continuous generating machining of screw rotors with worm-shaped tools. Appl Math Model 38:28-37 20. Brecher C, Brumm M, Hübner F (2015) Approach for the calculation of cutting forces in generating gear grinding. Procedia CIRP 33:287-292 21. Litvin FL, Fuentes A, Zanzi C et al (2002) Face-gear drive with spur involute pinion:geometry, generation by a worm, stress analysis. Comput Methods Appl Mech Eng 191:2785-2813 22. Klocke F, Brumm M, Reimann J (2013) Modeling of surface zone influences in generating gear grinding. Procedia CIRP 8:21-26 23. Böttger J, Kimme S, Drossel W (2019) Simulation of dressing process for continuous generating gear grinding. Procedia CIRP 79:280-285 24. Fong Z, Chen G (2016) Gear flank modification using a variable lead grinding worm method on a computer numerical control gear grinding machine. J Mech Des 138(8):083302. https://doi.org/10.1115/1.4033919 25. Wu YR, Fan CW (2013) Mathematical modeling for screw rotor form grinding on vertical multi-axis computerized numerical control form grinder. J Manuf Sci Eng 135(5):051020. https://doi.org/10.1115/4025339 26. Jia K, Guo J, Zheng S et al (2019) A general mathematical model for two-parameter generating machining of involute cylindrical gears. Appl Math Model 75:37-51 27. Merritt HE (1951) Gears, 3rd edn. Isaac Pitman & Sons, London 28. Litvin FL, Fuentes A (2004) Gear geometry and applied theory. Cambridge University Press, Cambridge |