1. Mayr J, Jedrzejewski J, Uhlmann E et al (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771-791 2. Weck M, McKeown P, Bonse R et al (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann Manuf Technol 44(2):589-598 3. Bryan J (1990) International status of thermal error research (1990). CIRP Ann Manuf Technol 39(2):645-656 4. Liu Y, Ma YX, Meng QY et al (2018) Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system. Adv Manuf 6:384-400 5. Xiang S, Zhu X, Yang J (2014) Modeling for spindle thermal error in machine tools based on mechanism analysis and thermal basic characteristics tests. Proc Inst Mech Eng Part C J Mech Eng Sci 228(18):3381-3394 6. Liu K, Liu Y, Sun M et al (2016) Spindle axial thermal growth modeling and compensation on CNC turning machines. Int J Adv Manuf Technol 87:2285-2292 7. Xiang S, Yao X, Du Z et al (2018) Dynamic linearization modeling approach for spindle thermal errors of machine tools. Mechatronics 53:215-228 8. Liu P, Yao X, Ge G et al (2021) A dynamic linearization modeling of thermally induced error based on data-driven control for CNC machine tools. Int J Precis Eng Manuf 22:241-258 9. Li Y, Zhao W, Lan S et al (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20-38 10. Wang L, Wang H, Li T et al (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80:389-400 11. Liu PL, Du ZC, Li HM et al (2021) Thermal error modeling based on BiLSTM deep learning for CNC machine tool. Adv Manuf 9:235-249 12. Zou Z, Yan W, Ma W et al (2021) Development of thermal error mapping model for the dry gear hobbing machine based on CNN-DAE integrated structure and its application. Int J Adv Manuf Technol 113:2343-2354 13. Liang YC, Li WD, Lou P et al (2022) Thermal error prediction for heavy-duty CNC machines enabled by long short-term memory networks and fog-cloud architecture. J Manuf Syst 62:950-963 14. Ko TJ, Gim TW, Ha JY (2003) Particular behavior of spindle thermal deformation by thermal bending. Int J Mach Tools Manuf 43:17-23 15. Liu K, Li T, Liu H et al (2020) Analysis and prediction for spindle thermal bending deformations of a vertical milling machine. IEEE Trans Ind Inform 16:1549-1558 16. Liu J, Ma C, Wang S (2020) Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools. Mech Syst Signal Process 138:106538. https://doi.org/10.1016/j.ymssp.2019.106538 17. Yang J, Shi H, Feng B et al (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77:1005-1017 18. Ma C, Zhao L, Mei X et al (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89:3071-3085 19. Yang J, Mei X, Zhao L et al (2015) Thermal error compensation on a computer numerical control machine tool considering thermal tilt angles and cutting tool length. Proc Inst Mech Eng Part B J Eng Manuf 229:78-97 20. Liu J, Ma C, Gui H et al (2021) Thermally-induced error compensation of spindle system based on long short term memory neural networks. Appl Soft Comput 102:107094. https://doi.org/10.1016/j.asoc.2021.107094 21. Wang S, Yang Y, Li X et al (2013) Research on thermal deformation of large-scale computer numerical control gear hobbing machines. J Mech Sci Technol 27:1393-1405 22. Xiang S, Deng M, Li H et al (2019) Cross-rail deformation modeling, measurement and compensation for a gantry slideway grinding machine considering thermal effects. Meas Sci Technol 30(6):065007. https://doi.org/10.1088/1361-6501/ab1232 23. Tan B, Mao X, Liu H et al (2014) A thermal error model for large machine tools that considers environmental thermal hysteresis effects. Int J Mach Tools Manuf 82/83:11-20 24. Mian NS, Fletcher S, Longstaff AP et al (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng 37:372-379 25. Ye WH, Guo YX, Zhou HF et al (2020) Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine. Adv Manuf 8:119-132 26. ISO 230-3:2020 (2020) Test code for machine tools-part 3:determination of thermal effects. Switzerland 27. Moré JJ, Sorensen DC (1983) Computing a trust region step. SIAM J Sci Stat Comput 4:553-572 |