Advances in Manufacturing ›› 2023, Vol. 11 ›› Issue (3): 523-540.doi: 10.1007/s40436-023-00447-z
• ARTICLES • Previous Articles Next Articles
Dong-Xu Wang1, Jing Chen1, Di-Fan Zhou1, Chuan-Bing Cai1,2
Received:
2022-08-03
Revised:
2022-10-09
Online:
2023-09-09
Published:
2023-09-09
Contact:
Chuan-Bing Cai,E-mail:cbcai@t.shu.edu.cn
E-mail:cbcai@t.shu.edu.cn
Supported by:
Dong-Xu Wang, Jing Chen, Di-Fan Zhou, Chuan-Bing Cai. Development of metal-organic deposition-derived second-generation high-temperature superconductor tapes and artificial flux pinning[J]. Advances in Manufacturing, 2023, 11(3): 523-540.
1. Park T, Park E, Lee H et al (2008) Pressure-induced superconductivity in CaFe2As2. J Phys-Condens Mat 20(32):322204. https://doi.org/10.1088/0953-8984/20/32/322204 2. Larbalestier D, Gurevich A, Feldmann DM et al (2001) High-Tc superconducting materials for electric power applications. Nature 414(6961):368-377 3. Crisan A (2017) Vortices and nanostructured superconductors. Springer, Berlin 4. Breit V, Schweiss P, Hauff R et al (1995) Evidence for chain superconductivity in near-stoichiometric YBa2Cu3O7-δ single crystals. Phys Rev B 52(22):15727-15730 5. Macmanus-Driscoll JL, Wimbush SC (2021) Processing and application of high-temperature superconducting coated conductors. Nat Rev Mater 6(7):587-604 6. Foltyn SR, Civale L, Macmanus-Driscoll JL et al (2007) Materials science challenges for high-temperature superconducting wire. Nat Mater 6(9):631-642 7. Teresa P, Xavier O (2014) Coated conductors for power applications: materials challenges. Supercon Sci Tech 27(4):044003. https://doi.org/10.1088/0953-2048/27/4/044003 8. Xu A, Delgado L, Gharahcheshmeh MH et al (2015) Strong correlation between J c(T, H||c) and Jc(77 K, 3 T||c) in Zr-added (Gd, Y)BaCuO coated conductors at temperatures from 77 down to 20 K and fields up to 9 T. Supercond Sci Technol 28(8):082001. https://doi.org/10.1088/0953-2048/28/8/082001 9. Mankiewich PM, Scofield JH, Skocpol WJ et al (1987) Reproducible technique for fabrication of thin films of high transition temperature superconductors. Appl Phys Lett 51(21):1753-1755 10. Gupta A, Jagannathan R, Cooper EI et al (1988) Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl Phys Lett 52(24):2077-2079 11. Smith JA, Cima MJ, Sonnenberg N (1999) High critical current density thick MOD-derived YBCO films. IEEE T Appl Supercon 9(2):1531-1534 12. Dawley JT, Clem PG, Boyle T et al (2004) Rapid processing method for solution deposited YBa2Cu3O7-δ thin films. Physica C 402(1):143-151 13. Rupich MW, Schoop U, Verebelyi DT et al (2009) The development of second generation HTS wire at American superconductor. IEEE T Appl Supercon 19(2):3231-3235 14. Malozemoff AP, Fleshler S, Rupich M et al (2007) Progress in HTS coated conductors and their applications. Supercon Sci Tech 21(3):034005. https://doi.org/10.1088/0953-2048/21/3/034005 15. Cui XM, Tao BW, Tian Z et al (2006) Enhancement of flux pinning of TFA-MOD YBCO thin films by embedded nanoscale Y2O3. Supercon Sci Tech 19(8):844. https://doi.org/10.1088/0953-2048/19/8/027 16. Goyal A, Norton DP, Budai JD et al (1996) High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3O7-δ thick films on biaxially textured metals. Appl Phys Lett 69(12):1795-1797 17. Iijima Y, Tanabe N, Kohno O et al (1992) In-plane aligned YBa2Cu3O7-δ thin films deposited on polycrystalline metallic substrates. Appl Phys Lett 60(6):769-771 18. Wu XD, Foltyn SR, Arendt PN et al (1995) Properties of YBa2Cu3O7-δ thick films on flexible buffered metallic substrates. Appl Phys Lett 67(16):2397-2399 19. Yasuhirio I, Kazuomi, et al (2002) Temperature and RE elemental dependence for ZrO2-RE2O3 oxide film growth by IBAD method. Physica C 378(2):960-964 20. Hühne R, Güth K, Gartner R et al (2010) Application of textured IBAD-TiN buffer layers in coated conductor architectures. Supercon Sci Tech 23(1):014010. https://doi.org/10.1088/0953-2048/23/1/014010 21. Kidszun M, Huhne R, Holzapfel B et al (2010) Ion-beam-assisted deposition of textured NbN thin films. Supercon Sci Tech 23(2):025010. https://doi.org/10.1088/0953-2048/23/2/025010 22. Iijima Y, Kakimoto K, Yamada Y et al (2004) Research and development of biaxially textured IBAD-GZO templates for coated superconductors. Mrs Bull 29(8):564-571 23. Usoskin A, Betz U, Dietrich R et al (2016) Long HTS coated conductors processed via large area PLD/ABAD deposition for high field applications. IEEE T Appl Supercon 26(3):6602304. https://doi.org/10.1109/TASC.2016.2542253 24. Prusseit W, Nemetschek R, Hoffmann C et al (2005) ISD process development for coated conductors. Physica C 426(2):866-871 25. Selvamanickam V, Chen Y, Xiong X et al (2008) Progress in second-generation HTS wire development and manufacturing. Physica C 468(15):1504-1509 26. Kakimoto K, Igarashi M, Hanada Y et al (2009) High-speed deposition of high-quality RE123 films by a PLD system with hot-wall heating. Supercon Sci Tech 23(1):014016. https://doi.org/10.1088/0953-2048/23/1/014016 27. Selvamanickam V, Xie Y, Reeves J et al (2004) MOCVD-based YBCO-coated conductors. Mrs Bull 29(8):579-582 28. Matias V, Hanisch J, Reagor D et al (2009) Reactive Co-evaporation of YBCO as a low-cost process for fabricating coated conductors. IEEE T Appl Supercon 19(3):3172-3175 29. Holesinger TG, Civale L, Maiorov B et al (2008) Progress in nanoengineered microstructures for tunable high-current, hightemperature superconducting wires. Adv Mater 20(3):391-407 30. Qi X, Macmanus-Driscoll JL (2001) Liquid phase epitaxy processing for high temperature superconductor tapes. Curr Opin Solid St M 5(4):291-300 31. Yoshizumi M, Nakanishi T, Matsuda J et al (2008) Crystal growth of YBCO coated conductors by TFA-MOD method. Physica C 468(15):1531-1533 32. Senatore C, Barth C, Bonura M et al (2016) Field and temperature scaling of the critical current density in commercial REBCO coated conductors. Supercon Sci Tech 29(1):014002. https://doi.org/10.1088/0953-2048/29/1/014002 33. Araki T, Hirabayashi I (2003) Review of a chemical approach to YBa2Cu3O7-δ coated superconductors-metalorganic deposition using trifluoroacetates. Supercon Sci Tech 16(11):R71-R94 34. Obradors X, Puig T, Pomar A et al (2006) Progress towards allchemical superconducting YBa2Cu3O7-δ-coated conductors. Supercon Sci Tech 19(3):S13-S26 35. Li M, Yang W, Shu G et al (2015) Controlled-growth of film using modified low-fluorine chemical solution deposition. IEEE T Appl Supercon 25(3):1-4 36. Gu Z, Cui C, Jie Y et al (2016) Direct observation of wrinkling and healing evolution for YBa2Cu3O7-δ precursor films prepared by the metalorganic solution method. IEEE T Appl Supercon 26(8):1-7 37. Li M, Liu Z, Bai C et al (2017) Artificial control for nucleation and growth rate of YBa2Cu3O7-δ coated conductors prepared by low fluorine chemical solution deposition. Physica C 537:29-33 38. Wimbush SS (2022) A high-temperature superconducting (HTS) wire critical current database. http://www.figureshare.org. Accessed 21 Feb 2022 39. Ito T, Ichino Y, Tsuchiya Y et al (2021) Enhancement of I-C of BaHfO3 -doped REBCO thick coated conductor using vapor-liquid-solid growth technique. IEEE T Appl Supercon 31(5):6601304. https://doi.org/10.1109/TASC.2021.3072480 40. Ito T (2021) Enhancement of Ic of BaHfO3-doped REBCO thick coated conductor using vapor-liquid-solid growth technique. IEEE T Appl Supercon 31(5):6601304. https://doi.org/10.1109/TASC.2021.3072480 41. Yasuda K, Ito T, Tsuchiya Y et al (2020) Fabrication of YBa2Cu3O7-δ coated conductor by vapor-liquid-solid growth technique using a reel-to-reel system. J Phys Conf Ser JPCS 1590:012029. https://doi.org/10.1088/1742-6596/1590/1/012029 42. Ito T (2021) Effect of surface liquid layer during film growth on morphology of BaHfO32Cu3O7-δ coated conductors fabricated by pulsed laser deposition. IEEE T Appl Supercon 31(5):6601205. https://doi.org/10.1109/TASC.2021.3071143 43. Hopkins SC, Mitchell-Williams TB, Bussche DRV et al (2016) Low AC loss inkjet-printed multifilamentary YBCO coated conductors. IEEE T Appl Supercon 26(3):1-5 44. Driessche IV, Feys J, Hopkins SC et al (2012) Chemical solution deposition using ink-jet printing for YBCO coated conductors. Supercon Sci Tech 25(6):65017-65028 45. Vandaele K, Mosiadz M, Hopkins SC et al (2012) The influence of heat treatment parameters on pyrolysed TFA-derived YBCO films deposited by inkjet printing. Mater Res Bull 47(8):2032-2039 46. Soler L, Jareo J, Banchewski J et al (2020) Ultrafast transient liquid assisted growth of high current density superconducting films. Nat Commun 11(1):344. https://doi.org/10.1038/s41467-019-13791-1 47. Rasi S, Soler L, Jareo J et al (2020) Relevance of the formation of intermediate non-equilibrium phases in YBa2Cu3O7-δ film growth by transient liquid assisted growth. J Phys Chem C 124(28):15574-15584 48. Feys J, Vermeir P, Lommens P et al (2012) Ink-jet printing of YBa2Cu3O7-δ superconducting coatings and patterns from aqueous solutions. J Mater Chem 22(9):3717-3726 49. Obradors X, Puig T, Ricart S et al (2012) Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7-δ thin films based on trifluoroacetate solutions. Supercon Sci Tech 25(12):123001. https://doi.org/10.1088/0953-2048/25/12/123001 50. Nakaoka K, Yoshida R, Kimura K et al (2017) Another approach for controlling size and distribution of nanoparticles in coated conductors fabricated by the TFA-MOD method. Supercon Sci Tech 30(5):055008. https://doi.org/10.1088/1361-6668/aa66e1 51. Wu JZ, Shi JJ (2017) Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films. Supercon Sci Tech 30(10):103002. https://doi.org/10.1088/1361-6668/aa8288 52. Kwok WK, Welp U, Glatz A et al (2016) Vortices in high-performance high-temperature superconductors. Rep Prog Phys 79(11):116501. https://doi.org/10.1088/0034-4885/79/11/116501 53. Chen J, Huang RT, Shen JJ et al (2021) Significant improvement of the critical current of mod-derived YBa2Cu3O7-δ-coated conductors by post-annealing treatment. Appl Phys Express 14(5):055506. https://doi.org/10.35848/1882-0786/abf4f0 54. Jiang P, Zhang S, Fan Z et al (2017) Development of multipass MOCVD process for fabricating (Gd, Y)Ba2Cu3O7-δ coated conductors. IEEE T Appl Supercon 27(4):6600405. https://doi.org/10.1109/TASC.2016.2625759 55. Iijima Y, Adachi Y, Fujita S et al (2015) Development for mass production of homogeneous RE123 coated conductors by hot-wall PLD process on IBAD template technique. IEEE T Appl Supercon 25(3):6604104. https://doi.org/10.1109/TASC.2014.2379923 56. Lee JH, Lee H, Lee JW et al (2014) RCE-DR, a novel process for coated conductor fabrication with high performance. Supercon Sci Tech 27(4):044018. https://doi.org/10.1088/0953-2048/27/4/044018 57. Fan Z, Qi Y, Gu H et al (2015) Optimum composition in 10% Zr-added GdYBCO coated conductor for enhanced flux pinning at 30 K. IEEE T Appl Supercon 25(3):6601905c. https://doi.org/10.1109/TASC.2014.2371538 58. Chen Y, Selvamanickam V, Zhang Y et al (2009) Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Appl Phys Lett 94(6):062513. https://doi.org/10.1063/1.3082037 59. Zhang Y, Lehner T, Fukushima T et al (2013) Progress in production and performance of second generation (2G) HTS wire for practical applications. In: IEEE international conference on applied superconductivity and electromagnetic devices (ASEMD), Beijing, China 60. Chen Y, Shi T, Guevara AP et al (2011) Composition effects on the critical current of MOCVD-processed Zr:GdYBCO coated conductors in an applied magnetic field. IEEE T Appl Supercon 21(3):3166-3170 61. Selvamanickam V, Chen Y, Shi T et al (2013) Enhanced critical currents in (Gd, Y)Ba2Cu3O7-δ superconducting tapes with high levels of Zr addition. Supercon Sci Tech 26(3):035006. https://doi.org/10.1088/0953-2048/26/3/035006 62. Xu A, Khatri N, Liu Y et al (2015) Broad temperature pinning study of 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O MOCVD coated conductors. IEEE T Appl Supercon 25(3):6603105. https://doi.org/10.1109/TASC.2014.2375231 63. Llordes A, Palau A, Gazquez J et al (2012) Nanoscale straininduced pair suppression as a vortex-pinning mechanism in hightemperature superconductors. Nat Mater 11(4):329-336 64. Coll M, Guzman R, Garces P et al (2014) Size-controlled spontaneously segregated Ba2YTaO6 nanoparticles in YBa2Cu3O7-δ nanocomposites obtained by chemical solution deposition. Supercon Sci Tech 27(4):044008. https://doi.org/10.1088/0953-2048/27/4/044008 65. Miura M, Maiorov B, Willis JO et al (2013) The effects of density and size of BaMO3 (M = Zr, Nb, Sn) nanoparticles on the vortex glassy and liquid phase in (Y, Gd)Ba2Cu3O7-δ coated conductors. Supercon Sci Tech 26(3):035008. https://doi.org/10.1088/0953-2048/26/3/035008 66. Gutierrez J, Llordes A, Gazquez J et al (2007) Strong isotropic flux pinning in solution-derived YBa2Cu3O7-δ nanocomposite superconductor films. Nat Mater 6(5):367-373 67. Engel S, Thersleff T, Huehne R et al (2007) Enhanced flux pinning in YBa2Cu3O7-δ layers by the formation of nanosized BaHfO3 precipitates using the chemical deposition method. Appl Phys Lett 90(10):102505. https://doi.org/10.1063/1.2711761 68. Erbe M, Haenisch J, Huehne R et al (2015) BaHfO369. Ye S, Suo H, Wu Z et al (2011) Preparation of solution-based YBCO films with BaSnO3 particles. Physica C 471(7/8):265-269 70. Ding FZ, Gu HW, Zhang T et al (2013) Strong flux pinning enhancement in YBa2Cu3O7-δ films by embedded BaZrO3 and BaTiO3 nanoparticles. Chin Phys B 22(7):077401. https://doi.org/10.1088/1674-1056/22/7/077401 71. Guzman R, Gazquez J, Mundet B et al (2017) Probing localized strain in solution-derived YBa2Cu3O7-δ nanocomposite thin films. Phys Rev Mater 1(2):024801. https://doi.org/10.1103/PhysRevMaterials.1.024801 72. Rouco V, Palau A, Guzman R et al (2014) Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites. Supercon Sci Tech 27(12):125009. https://doi.org/10.1088/0953-2048/27/12/125009 73. Chen J, Huang R, Zhou D et al (2022) Improvement of epitaxial growth and flux pinning of MOD-derived YBa2Cu3O7-δ nanocomposites films by self-seeding and multi-element doping strategies. J Eur Ceram Soc 42(14):6542-6550 74. Obradors X, Puig T, Li Z et al (2018) Epitaxial YBa2Cu3O7-δ nanocomposite films and coated conductors from BaMO375. Li Z, Coll M, Mundet B et al (2019) Control of nanostructure and pinning properties in solution deposited YBa2Cu3O7-δ nanocomposites with preformed perovskite nanoparticles. Sci Rep 9:5828. https://doi.org/10.1038/s41598-019-42291-x 76. Díez-Sierra J, Lopez-Dominguez P, Rijckaert H et al (2020) High critical current density and enhanced pinning in superconducting films of YBa2Cu3O7-δ nanocomposites with embedded BaZrO33, BaTiO3377. Matsui H, Ootsuka T, Ogiso H et al (2015) Enhancement of critical current density in YBa2Cu3O7-δ films using a semiconductor ion implanter. J Appl Phys 117(4):043911. https://doi.org/10.1063/1.4906782 78. Sueyoshi T, Sogo T, Nishimura T et al (2016) Angular behaviour of critical current density in YBa2Cu3O7-δ thin films with crossed columnar defects. Supercon Sci Tech 29(6):065023. https://doi.org/10.1088/0953-2048/29/6/065023 79. Nakashima K, Chikumoto N, Ibi A et al (2007) Effect of ionirradiation and annealing on superconductive property of PLD prepared YBCO tapes. Physica C 463:665-668 80. Matsui H, Ootsuka T, Ogiso H et al (2016) Origin of the dimpled critical-current versus magnetic-field-angle relation in YBa2Cu3O7-δ films studied using sub-MeV ion irradiation. Supercon Sci Tech 29(6):065002. https://doi.org/10.1088/0953-2048/29/6/065002 81. Gu Y, Cai CB, Liu ZY et al (2021) Effect of Ta irradiation on microstructure and current carrying properties of YBCO coated conductors with element doping. J Appl Phys 130(8):0053158. https://doi.org/10.1063/5.0053158 82. Bergen A, Andersen R, Bauer M et al (2019) Design and in-field testing of the world’s first ReBCO rotor for a 3.6 MW wind generator. Supercon Sci Tech 32(12):125006. https://doi.org/10.1088/1361-6668/ab48d6 83. Wikus P, Frantz W, Kummerle R et al (2022) Commercial gigahertz-class NMR magnets. Supercon Sci Tech 35(3):033001. https://doi.org/10.1088/1361-6668/ac4951 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn