[1] Costa GB, Damiani JS, Marchesan G et al (2022) A multi-agent approach to distribution system fault section estimation in smart grid environment. Electr Power Syst Res 204:107658. https://doi.org/10.1016/j.epsr.2021.107658 [2] Miao Z, Yu J, Ji J et al (2019) Multi-objective region reaching control for a swarm of robots. Automatica 103:81-87 [3] Xia W, Cao M, Johansson KH (2016) Structural balance and opinion separation in trust-mistrust social networks. IEEE Trans Control Netw Syst 3(1):46-56 [4] Ju C, Kim J, Seol J et al (2022) A review on multirobot systems in agriculture. Comput Electron Agric 202:107336. https://doi.org/10.1016/j.compag.2022.107336 [5] Albiero D, Garcia AP, Umezu CK et al (2022) Swarm robots in mechanized agricultural operations: a review about challenges for research. Comput Electron Agric 193:106608. https://doi.org/10.1016/j.compag.2021.106608 [6] Su H, Zhang J, Chen X (2019) A stochastic sampling mechanism for time-varying formation of multiagent systems with multiple leaders and communication delays. IEEE Trans Neural Netw Learn Syst 30(12):3699-3707 [7] Su H, Wu H, Chen X et al (2018) Positive edge consensus of complex networks. IEEE Trans Syst Man Cybern 48(12):2242-2250 [8] Qian Y, Zhang W, Ji M et al (2020) Observer-based positive edge consensus for directed nodal networks. IET Contr Theory Appl 14(2):352-357 [9] Wu H, Zhu Z (2022) Improved results on distributed observer-based positive edge consensus. J Frankl Inst-Eng Appl Math. https://doi.org/10.1016/j.jfranklin.2022.05.016 [10] Zhao Y, Zhu F, Xu D (2022) Event-triggered bipartite time-varying formation control for multiagent systems with unknown inputs. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2022.3208228 [11] Zhang W, Su H, Zhu F et al (2013) Observer-based H∞ synchronization and unknown input recovery for a class of digital nonlinear systems. Circ Syst Signal Process 32(6):2867-2881 [12] Wang Z, Xun Y, Wang Y et al (2022) Review of smart robots for fruit and vegetable picking in agriculture. Int J Agric Biol Eng 15(1):33-54 [13] Zhang C, Noguchi N (2017) Development of a multi-robot tractor system for agriculture field work. Comput Electron Agric 142:79-90 [14] Li Z, Duan Z, Chen G et al (2010) Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans Circuits Syst I-Regul Pap 57(1):213-224 [15] Li Z, Ren W, Liu X et al (2013) Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans Autom Control 58(7):1786-1791 [16] Yan C, Zhang W, Su H et al (2022) Adaptive bipartite time-varying output formation control for multiagent systems on signed directed graphs. IEEE Trans Cybern 52(9):8987-9000 [17] Noguchi N, Will J, Reid J et al (2004) Development of a master-slave robot system for farm operations. Comput Electron Agric 44:1-19 [18] Johnson DA, Naffin DJ, Puhalla JS et al (2009) Development and implementation of a team of robotic tractors for autonomous peat moss harvesting. J Field Robot 26(6/7):549-571 [19] Zhang W, Su H, Zhu F et al (2012) A note on observers for discrete-time Lipschitz nonlinear systems. IEEE Trans Circuits Syst II-Express Briefs 59(2):123-127 [20] Zou W, Shi P, Xiang Z et al (2020) Finite-time consensus of second-order switched nonlinear multi-agent systems. IEEE Trans Syst Man Cybern 31(5):1757-1762 [21] Zou W, Guo J, Ahn CK et al (2022) Sampled-data consensus protocols for a class of second-order switched nonlinear multiagent systems. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2022.3163157 [22] Zou W, Zhou C, Guo J et al (2021) Global adaptive leader-following consensus for second-order nonlinear multiagent systems with switching topologies. IEEE Trans Circuits Syst II-Express Briefs 68(2):702-706 [23] Abbaszadeh M, Marquez HJ (2010) Nonlinear observer design for one-sided Lipschitz systems. In: Proceedings of the 2010 American control conference, June 30-July 2, 2010, Baltimore, MD, USA, pp 5284?5289 [24] Zhang W, Su H, Liang Y et al (2012) Non-linear observer design for one-sided Lipschitz systems: an linear matrix inequality approach. IET Control Theory Appl 6(9):1297-1303 [25] Cao Y, Zhang L, Li C et al (2017) Observer-based consensus tracking of nonlinear agents in hybrid varying directed topology. IEEE Trans Cybern 47(8):2212-2222 [26] A??kme?e B, Corless M (2011) Observers for systems with nonlinearities satisfying incremental quadratic constraints. Automatica 47:1339-1348 [27] Zhao Y, Zhang W, Su H et al (2020) Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Trans Syst Man Cybern 50(12):5221-5232 [28] Wang X, Wang X, Su H et al (2022) Reduced-order interval observer based consensus for MASs with time-varying interval uncertainties. Automatica 135:109989. https://doi.org/10.1016/j.automatica.2021.109989 [29] Xu X, A??kme?e B, Corless MJ (2021) Observer-based controllers for incrementally quadratic nonlinear systems with disturbances. IEEE Trans Autom Control 66(3):1129-1143 [30] Li X, Liu F, Buss M et al (2020) Fully distributed consensus control for linear multiagent systems: a reduced-order adaptive feedback approach. IEEE Trans Control Netw Syst 7(2):967-976 [31] Chu H, Liu X, Zhang W et al (2016) Observer-based consensus tracking of multi-agent systems with one-sided Lipschitz nonlinearity. J Frankl Inst-Eng Appl Math 353:1594-1614 [32] Yan C, Zhang W, Li X et al (2020) Observer-based time-varying formation tracking for one-sided Lipschitz nonlinear systems via adaptive protocol. Int J Control Autom Syst 18:2753-2764 [33] Li S, Ahn CK, Guo J et al (2021) Neural network-based sampled-data control for switched uncertain nonlinear systems. IEEE Trans Syst Man Cybern 51(9):5437-5445 [34] Yu Y, Guo J, Ahn CK et al (2022) Neural adaptive distributed formation control of nonlinear multi-UAVs with unmodeled dynamics. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3157079 [35] Zhang Y, Guo J, Xiang Z (2022) Finite-time adaptive neural control for a class of nonlinear systems with asymmetric time-varying full-state constraints. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3164948 [36] Yu J, Dong X, Li Q et al (2018) Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Trans Neural Netw Learn Syst 29(12):6015-6025 |