1. Blazynski TZ (1983) Explosive welding, forming, and compaction. Springer, Berlin 2. Carl LR (1944) Brass welds made using detonation impulses. Met Prog 46:102–103 3. Crossland B, Bahrani AS (1968) Fundamentals of explosive welding. Contemp Phys 9:71–87 4. Findik F (2011) Recent developments in explosive welding. Mater Des 32(3):1081–1093 5. Wittman RH, Carpenter SH (1975) Explosion welding. Annu Rev Mater Sci 5:177–199 6. Kore SD (2018) Magnetic pulse welding. Weld Fundam Process 6:704–710 7. Vivek A, Hansen SR, Liu BC et al (2013) Vaporizing foil actuator: tool for collision welding. J Mater Process Technol 213:2304–2311 8. Wang H, Taber G, Liu D et al (2015) Laser impact welding: apparatus design and parametric optimization. J Manufacturing Process 19:118–124 9. Kuz’minLysak VIVI, Kriventsov AN et al (2004) Critical conditions for formation and failure of welded joints during explosive welding. Weld Int 18:223–227 10. Raoelison RN, Sapanathan T, Padayodi E et al (2016) Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: numerical computations of experimental observations. J Mech Phys Solids 96:147–161 11. Vivek A, Liu BC, Hansen SR et al (2014) Accessing the collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets. J Mater Process Technol 214:1583–1589 12. Zhang Y, Babu SS, Prothe C et al (2011) Application of high velocity impact welding at different length scales. J Mater Process Technol 211:944–952 13. Wittman RH (1973) Influence of collision parameters on the strength and microstructure of explosion-welded aluminum alloys. Proc 2nd Int Symp Use Explos Energy Manufacturer 153–168 14. Zakharenko ID (1971) Thermal state of the weld zone in explosive welding. Combust Explos Shock Waves 7:229–231 15. Zakharenko ID, Sobolenko TM (1971) Thermal effects in the weld zone in explosive welding. Combust Explos Shock Waves 7:373–375 16. Zakharenko ID (1972) Critical conditions in detonation welding. Combust Explos Shock Waves 8:341–345 17. Efremov VV, Zakharenko ID, Division S (1976) Determination of the upper limit to explosive welding. Fiz Goreniya y Vzryva 3:226–230 18. Émurlaeva YY, Bataev IA, Zhou Q et al (2019) Welding window: comparison of the Deribas and Wittman approaches and SPH simulation results. Metals (Base) 9(12):1323 19. Lippold JC (2014) Welding metallurgy and weldability. John Wiley & Sons, Hoboken 20. Fukuhisa M, Nakagawa H, Sorada K (1982) Dynamic observation of solidification and solidification cracking during welding with an optical microscope (I): solidification front and behavior of cracking (materials, metallurgy, and weldability). Trans JWRI 11(2):67–77 21. Cross C (2005) Origin of weld-solidification cracking. In Boellinghaus T, Herold H (eds) Hot-crack phenom welds, Springer, Berlin 22. Deribas AA, Zakharenko ID (1975) Determination of limiting collision conditions for the explosive welding of metals. Fiz Goreniya y Vzryva 11:133–135 23. Prasad KS, Mao Y, Vivek A et al (2020) Rapid throughput system for shock and impact characterization: design and examples in compaction, spallation, and impact welding. J Manuf Mater Process 4(4):116. https://doi.org/10.3390/jmmp4040116 24. Wang H, Wang Y (2019) High-velocity impact welding process: a review. Metals (Base) 9(2):144. https://doi.org/10.3390/met9020144 25. Mallory HD (1955) Propagation of shock waves in aluminum. J Appl Phys 26:555–559 26. Meyers MA, Murr LETATT (1981) Shock waves and high strain rate phenomena in metals: concepts and applications. Springer, Berlin 27. Carvalho GHSFL, Galvão I, Mendes R et al (2018) Explosive welding of aluminum to stainless steel. J Mater Process Technol 262:340–349 28. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. In: 2nd ed. Clarendon Press 29. Zakharenko ID (1990) Explosion welding of metals. Minsk: Science and Engineering 30. Kachan MS, Trishin YA (1975) Compression and rarefaction waves in solids. Combust Explos Shock Waves 11:816–819 31. Godunov SK, Deribas AA, Zabrodin AV et al (1970) Hydrodynamic effects in colliding solids. J Comput Phys 5:517–539 32. Walsh JM, Shreffler RG, Willig FJ (1953) Limiting conditions for jet formation during high-velocity collisions. J Appl Phys 24:349–359 33. Meyer MA (1994) Dynamic behavior of materials. John Wiley & Sons, Hoboken 34. Akbari-Mousavi SAA, Barrett LM et al (2008) Explosive welding of metal plates. J Mater Process Technol 202:224–239 35. Cui Y, Liu D, Zhang Y et al (2020) Microstructure and mechanical properties of a TA1-low alloy steel composite plate manufactured by explosive welding. Metals (Base) 10(5):663. https://doi.org/10.3390/met10050663 36. Thurston B, Mao Y, Lewis T et al (2021) Augmentation of plasma-based impulse generation with rapid chemical reactions BT - forming the future. In: Daehn G, Cao J, Kinsey B et al (eds) Forming the future, Springer, Cham 37. Ravichandran G (2003) On the conversion of plastic work into heat during high-strain-rate deformation. AIP Conf Proc 557:557–562 38. De Rosset WS (2006) Analysis of explosive bonding parameters. Mater Manuf Process 21:634–638 39. Klueh RL (2005) Properties and selection: iron, steel, and highperformance alloys. ASM International 40. Committee A (1990) Properties and selection: nonferrous alloys and special purpose materials. ASM International 92. https://doi.org/10.31399/asm.hb.v02.9781627081627 41. Marsh SP (1980) LASL shock Hugoniot data. University of California Press, Berkeley 42. Nassiri A, Zhang S, Lee T et al (2017) Numerical investigation of CP-Ti & Cu 110 impact welding using smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods. J Manuf Process 28:558–564 43. Gleason G, Sunny S, Sadeh S et al (2020) Eulerian modeling of plasma-pressure driven laser impact weld processes. Procedia Manuf 48:204–214 44. Vivek A, Gonzalez M, Barnett B et al (2023) Process effects on the heterogenous microctructure of an impact welded interface. In: Proc TMS 2023 Annu Meeting, San Diego 45. Nassiri A, Vivek A, Abke T et al (2017) Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics. Appl Phys Lett 110:231601. https://doi.org/10.1063/1.4984742 46. Zhang ZL, Liu MB (2019) Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Process 41:208–220 47. PlotDigitizer, 3.1.5 (accessed Dec 4 2023). Available: https://plotdigitizer.com. 48. Akbari MSAA, Farhadi SP (2009) Experimental investigation of explosive welding of CP-titanium/AISI 304 stainless steel. Mater Des 30:459–468 49. Sarvari M, Abdollah-zadeh A, Naffakh-Moosavy H et al (2019) Investigation of collision surfaces and weld interface in magnetic pulse welding of dissimilar Al/Cu sheets. J Manuf Process 45:356–367 50. Bataev IA, Ogneva TS, Bataev AA et al (2015) Explosively welded multilayer Ni-Al composites. Mater Des 88:1082–1087 51. Zeng XY, Li XQ, Li XJ et al (2019) Numerical study on the effect of thermal conduction on explosive welding interface. Int J Adv Manuf Technol 104:2607–2617 52. Metals R (2010) Standard specification for titanium and titanium alloy strip, sheet, and plate 1. Annu B ASTM Stand 03:1–9 |