1. Jiang X, Ge Z (2021) Data augmentation classifier for imbalanced fault classification. IEEE Trans Autom Sci Eng 18(3):1206-1217 2. Liu F, Dai Y (2022) Product processing quality classification model for small-sample and imbalanced data environment. Comput Intell Neurosci 2022:9024165. https://doi.org/10.1155/2022/9024165 3. Li Z, Wang Y, Wang K (2017) Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers:Industry 4.0 scenario. Adv Manuf 5(4):377-387 4. Zhuo Y, Ge Z (2020) Gaussian discriminative analysis aided GAN for imbalanced big data augmentation and fault classification. J Process Control 92:271-287 5. Lan Z, Huang G, Li Y et al (2022) Conquering insufficient/imbalanced data learning for the internet of medical things. Neural Comput Appl 35(31):22949-22958 6. Shao S, Wang P, Yan R (2019) Generative adversarial networks for data augmentation in machine fault diagnosis. Comput Ind 106:85-93 7. Islam A, Belhaouari SB, Rehman AU et al (2022) KNNOR:an oversampling technique for imbalanced datasets. Appl Soft Comput 115:108288. https://doi.org/10.1016/j.asoc.2021.108288 8. Krawczyk B, Wozniak M, Schaefer G (2014) Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl Soft Comput 14:554-562 9. Yang K, Yu Z, Wen X et al (2020) Hybrid classifier ensemble for imbalanced data. IEEE Trans Neural Netw Learn Syst 31(4):1387-1400 10. Madani M, Motameni H, Mohamadi H (2023) KNNGAN:an oversampling technique for textual imbalanced datasets. J Supercomput 79(5):5291-5326 11. Wei Z, Zhang L, Zhao L (2023) Minority-prediction-probability-based oversampling technique for imbalanced learning. Inf Sci 622:1273-1295 12. Koziarski M (2021) Potential anchoring for imbalanced data classification. Pattern Recognit 120:108114. https://doi.org/10.1016/j.patcog.2021.108114 13. Xie Y, Qiu M, Zhang H et al (2022) Gaussian distribution based oversampling for imbalanced data classification. IEEE Trans Knowl Data Eng 34(2):667-679 14. Kaur H, Pannu HS, Malhi AK (2019) A systematic review on imbalanced data challenges in machine learning:applications and solutions. ACM Comput Surv 52(4):1-36 15. Liu X, Wu J, Zhou Z (2009) Exploratory undersampling for class-Imbalance learning. IEEE Trans Syst Man Cybern B 39(2):539-550 16. Liu R (2023) A novel synthetic minority oversampling technique based on relative and absolute densities for imbalanced classification. Appl Intell 53(1):786-803 17. Son M, Jung S, Jung S et al (2021) BCGAN:a CGAN-based over-sampling model using the boundary class for data balancing. J Supercomput 77(9):10463-10487 18. Chawla NV, Bowyer KW, Hall LO et al (2002) SMOTE:synthetic minority over-sampling technique. J Artif Intell Res 16:321-357 19. He H, Bai Y, Garcia EA et al (2008) ADASYN:adaptive synthetic sampling approach for imbalanced learning. In:2008 IEEE international joint conference on neural networks, IEEE, pp 1322-1328 20. Han H, Wang WY, Mao BH (2005) Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning. Adv Intell Comput 3644:878-887 21. Douzas G, Bacao F, Last F (2018) Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf Sci 465:1-20 22. Goodfellow I, Pouget-Abadie J, Mirza M et al (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27. https://doi.org/10.3156/jsoft.29.5_177_2 23. Qin Z, Liu Z, Zhu P et al (2022) Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images. Comput Biol Med 148:105928. https://doi.org/10.1016/j.compbiomed.2022.105928 24. Li Y, Gan Z, Shen Y et al (2019) StoryGAN:a sequential conditional GAN for story visualization. In:proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Long Beach, CA, USA, pp 6322-6331 25. Yang G, Zhong Y, Yang L et al (2021) Fault diagnosis of harmonic drive with imbalanced data using generative adversarial network. IEEE Trans Instrum Meas 70:1-11 26. Li J, Cao L, Liu H et al (2023) Imbalanced data generation and fusion for in-situ monitoring of laser powder bed fusion. Mech Syst Signal Process 199:110508. https://doi.org/10.1016/j.ymssp.2023.110508 27. Li Y, Shi Z, Liu C et al (2022) Augmented time regularized generative adversarial network (ATR-GAN) for data augmentation in online process anomaly detection. IEEE Trans Autom Sci Eng 19(4):3338-3355 28. Yu Y, Guo L, Gao H et al (2022) PCWGAN-GP:a new method for imbalanced fault diagnosis of machines. IEEE Trans Instrum Meas 71:3180431. https://doi.org/10.1109/TIM.2022.3180431 29. Wang X, Jiang H, Liu Y et al (2023) Data-augmented patch variational autoencoding generative adversarial networks for rolling bearing fault diagnosis. Meas Sci Technol 34(5):055102. https://doi.org/10.1088/1361-6501/acb377 30. Wang X, Jiang H, Wu Z et al (2023) Adaptive variational autoencoding generative adversarial networks for rolling bearing fault diagnosis. Adv Eng Inform 56:102027. https://doi.org/10.1016/j.aei.2023.102027 31. Odena A, Olah C, Shlens J (2017) Conditional image synthesis with auxiliary classifier GANs. In:International conference on machine learning, Sydney, Australia, 2017 32. Park N, Mohammadi M, Gorde K et al (2018) Data synthesis based on generative adversarial networks. arXiv:1806.03384, https://doi.org/10.14778/3231751.3231757 33. Zhang Y, Zaidi N, Zhou J et al (2023) Interpretable tabular data generation. Knowl Inf Syst 65(7):2935-2963 34. Zhai J, Qi J, Zhang S (2022) Imbalanced data classification based on diverse sample generation and classifier fusion. Int J Mach Learn Cybern 13(3):735-750 35. Mirza M, Osindero S (2014) Conditional generative adversarial nets. https://doi.org/10.48550/arXiv.1411.1784 36. Xu L, Skoularidou M, Cuesta-Infante A et al (2019) Modeling tabular data using conditional GAN. Adv Neural Inf Process Syst, 32. https://doi.org/10.48550/arxiv.1907.00503 37. Dong Y, Xiao H, Dong Y (2022) SA-CGAN:an oversampling method based on single attribute guided conditional GAN for multi-class imbalanced learning. Neurocomputing 472:326-337 38. Choi E, Biswal S, Malin B et al (2017) Generating multi-label discrete patient records using generative adversarial networks.In:machine learning for healthcare conference, Northeastern University, 2017 39. Wen L, Zhang X, Li Q et al (2023) KGA:integrating KPCA and GAN for microbial data augmentation. Int J Mach Learn Cybern 14(4):1427-1444 40. De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The mahalanobis distance. Chemometr Intell Lab Syst 50(1):1-18 |