[1] Zhang Q, Ye PC, Yang ZY et al (2019) Application and development of connecting technique in automobile lightweight. Nonferrous Met Process 1:1-9 [2] Hang LJ, Guo YB (2021) Application and development of advanced connecting technique for automobile lightweight body. MW Met Form 4:1-6 [3] Fen FY, Chen YX (2021) Research status of aluminum/steel dissimilar metal welding technology. Weld Technol 1:1-8 [4] Chen SJ, Su S, Xiao J et al (2018) Measurement of impact velocity and analysis of influencing factors of gasification impact welding fly plate. Rare Met Mater Eng 47(11):3439-3443 [5] Zhen YM (2001) Explosive welding with dissimilar metals. Weld Technol 5:25-26 [6] Wang H, Wang Y (2019) High-velocity impact welding process: a review. Metals 9(2):144. https://doi.org/10.3390/met9020144 [7] Carvalho G, Galvão I, Mendes R et al (2018) Explosive welding of aluminium to stainless steel. J Mater Process Tech 262:340-349 [8] Stern A, Shribman V, Ben-Artzy A et al (2014) Interface phenomena and bonding mechanism in magnetic pulse welding. J Mater Eng Perform 23:3449-3458 [9] Wang X, Shao M, Jin H et al (2019) Laser impact welding of aluminum to brass. J Mater Process Technol 269:190-199 [10] Ren SR, Ma ZY, Chen LQ (2007) Research statusand prospect of friction stir welding and friction stir processing. Mater Rep 1:86-92 [11] Liu P, Li YJ, Wang J (2007) Microstructure and properties near interface zone of diffusion-bonded joint for Mg/Al dissimilar materials. Trans China Weld Inst (6):45-48, 115 [12] Nassiri A, Chini G, Vivek A et al (2015) Arbitrary Lagrangian-Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding. Mater Des 88:345-358 [13] Su S, Chen SJ, Xiao J et al (2019) Research on 5A06/0Cr18Ni10Ti gasification impact welding process based on intermediate transition layer. Acta Metall Sin 55(8):1041-1048 [14] Elango E, Saravanan S, Raghukandan K (2020) Experimental and numerical studies on aluminum-stainless steel explosive cladding. J Cent South Univ 27(6):1742-1753 [15] Yang P, Meng ZH, Huang SY et al (2015) Research review of magnetic pulse welding for dissimilar metals. Hot Work Technol 3:5-9 [16] Li J, Schneiderman B, Song S et al (2020) High strength welding of Ti to stainless steel by spot impact: microstructure and weld performance. Int J Adv Manuf Technol 108:1447-1461 [17] Lee T, Zhang S, Vivek A et al (2019) Wave formation in impact welding: study of the Cu-Ti system. CIRP Ann 68(1):261-264 [18] Hahn M, Weddeling C, Taber G et al (2016) Vaporizing foil actuator welding as a competing technology to magnetic pulse welding. J Mater Process Technol 230:8-20 [19] Sridharan N, Poplawsky J, Vivek A et al (2019) Cascading microstructures in aluminum-steel interfaces created by impact welding. Mater Charact 151:119-128 [20] Wang DW, Xiu SC (2017) Effect of welding temperature on interfacial microstructure and properties of carbon steel/austenitic stainless steel diffusion welding joints. Acta Metall Sin 5:567-574 [21] Yu HP, Xu ZD, Li CF et al (2011) Experimental research on magnetic pulse joining of 3A21aluminum Alloy-20 steel tubes. Acta Metall Sin 2:197-202 [22] Gupta V, Lee T, Vivek A et al (2019) A robust process-structure model for predicting the joint interface structure in impact welding. J Mater Process Technol 264:107-118 [23] Wang K, Shang SL, Wang Y et al (2020) Unveiling non-equilibrium metallurgical phases in dissimilar Al-Cu joints processed by vaporizing foil actuator welding. Mater Des 186:108306. https://doi.org/10.1016/j.matdes.2019.108306 [24] Estibals B, Salles A (2005) Design and realisation of integrated inductor with low DC-resistance value for integrated power applications. HAIT J Sci Eng B 2(5/6):848-868 [25] Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a Meshfree particle method. World Scientific |