[1] Rogers JA, Chen X, Feng X (2020) Flexible hybrid electronics. Adv Mater 32(15):1905590. https://doi.org/10.1002/adma.201905590 [2] Herbert R, Kim JH, Kim YS et al (2018) Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human-machine interfaces. Materials 11(2):187. https://doi.org/10.3390/ma11020187 [3] Tai LC, Gao W, Chao M et al (2018) Methylxanthine drug monitoring with wearable sweat sensors. Adv Mater 30(23):1707442. https://doi.org/10.1002/adma.201707442 [4] Ma Y, Zhang Y, Cai S et al (2020) Flexible hybrid electronics for digital healthcare. Adv Mater 32(15):1902062. https://doi.org/10.1002/adma.201902062 [5] Kim J, Seo J, Jung D et al (2020) Active photonic wireless power transfer into live tissues. Proc Natl Acad Sci 117(29):16856-16863 [6] Lim HR, Kim HS, Qazi R et al (2020) Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 32(15):1901924. https://doi.org/10.1002/adma.201901924 [7] Yu Y, Nassar J, Xu C et al (2020) Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 5(41):e7946. https://doi.org/10.1126/scirobotics.aaz7946 [8] Wu Y, Xiao D, Liu P et al (2023) Nanostructured conductive polypyrrole for antibacterial components in flexible wearable devices. Research 6:0074. https://doi.org/10.34133/research.0074 [9] Pu J, Ma K, Luo Y et al (2023) Textile electronics for wearable applications. Int J Extrem Manuf 5:042007. https://doi.org/10.1088/2631-7990/ace66a [10] Gao W, Emaminejad S, Nyein HYY et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509-514 [11] Wallin TJ, Pikul J, Shepherd RF (2018) 3D printing of soft robotic systems. Nat Rev Mater 3(6):84-100 [12] Li Z, Li H, Zhu X et al (2022) Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv Sci 9(14):2105331. https://doi.org/10.1002/advs.202105331 [13] Cho SY, Ho DH, Jo SB et al (2024) Direct 4D printing of functionally graded hydrogel networks for biodegradable, untethered, and multimorphic soft robots. Int J Extrem Manuf 6(2):025002. https://doi.org/10.1088/2631-7990/ad1574 [14] Lee C, Kim M, Kim YJ et al (2017) Soft robot review. Int J Control Autom Syst 15:3-15 [15] Wehner M, Truby RL, Fitzgerald DJ et al (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451-455 [16] Xu Z, Chen Y, Xu Q (2023) Spreadable magnetic soft robots with on-demand hardening. Research 6:0262. https://doi.org/10.34133/research.0262 [17] Martinez RV, Glavan AC, Keplinger C et al (2014) Soft actuators and robots that are resistant to mechanical damage. Adv Funct Mater 24(20):3003-3010 [18] Ma M, Guo L, Anderson DG et al (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339(6116):186-189 [19] Shi X, Zuo Y, Zhai P et al (2021) Large-area display textiles integrated with functional systems. Nature 591(7849):240-245 [20] Manda R, Pagidi S, Lim YJ et al (2019) Self-supported liquid crystal film for flexible display and photonic applications. J Mol Liq 291:111314. https://doi.org/10.1016/j.molliq.2019.111314 [21] Areir M, Xu Y, Harrison D et al (2018) Development of 3D printing technology for the manufacture of flexible electric double-layer capacitors. Mater Manuf Process 33:905-911 [22] Lee SM, Kwon JH, Kwon S et al (2017) A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans Electron Dev 64(5):1922-1931 [23] Koo JH, Kim DC, Shim HJ et al (2018) Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28:1801834. https://doi.org/10.1002/adfm.201801834 [24] Yang L, Hong X, Li J et al (2022) Rechargeable metasurfaces for dynamic color display based on a compositional and mechanical dual-altered mechanism. Research 2022:9828757. https://doi.org/10.34133/2022/9828757 [25] Xue W, Zhang Y, Liu F et al (2023) Self-powered flexible multicolor electrochromic devices for information displays. Research 6:0227. https://doi.org/10.34133/research.0227 [26] Zhu X, Liu M, Qi X et al (2021) Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv Mater 33(21):2007772. https://doi.org/10.1002/adma.202007772 [27] Chai W, Li L, Zhu W et al (2023) Graded heterojunction improves wide-bandgap perovskite for highly efficient 4-terminal perovskite/silicon tandem solar cells. Research 6:0196. https://doi.org/10.34133/research.0196 [28] Lee TD, Ebong AU (2017) A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev 70:1286-1297 [29] Hu S, Huan X, Liu Y et al (2023) Recent advances in meniscus-on-demand three-dimensional micro- and nano-printing for electronics and photonics. Int J Extrem Manuf 5(3):032009. https://doi.org/10.1088/2631-7990/acdf2d [30] Ali N, Hussain A, Ahmed R et al (2016) Advances in nanostructured thin film materials for solar cell applications. Renew Sustain Energy Rev 59:726-737 [31] Shang Y, Hao S, Yang C et al (2015) Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials 5(4):1782-1809 [32] Qi D, Zhang K, Tian G et al (2021) Stretchable electronics based on PDMS substrates. Adv Mater 33(6):2003155. https://doi.org/10.1002/adma.202003155 [33] Zhang H, Zhu X, Tai Y et al (2023) Recent advances in nanofiber-based flexible transparent electrodes. Int J Extrem Manuf 5:032005. https://doi.org/10.1088/2631-7990/acdc66 [34] Huang Z, Hao Y, Li Y et al (2018) Three-dimensional integrated stretchable electronics. Nat Electron 1(8):473-480 [35] He X, Lin Y, Ding Y et al (2022) Reshapeable, rehealable and recyclable sensor fabricated by direct ink writing of conductive composites based on covalent adaptable network polymers. Int J Extrem Manuf 4:015301. https://doi.org/10.1088/2631-7990/ac37f2 [36] Liu H, Li M, Liu S et al (2020) Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Mater Horiz 7(1):203-213 [37] Yang JC, Mun J, Kwon SY et al (2019) Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31(48):1904765. https://doi.org/10.1002/adma.201904765 [38] Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat Commun 4(1):1661. https://doi.org/10.1038/ncomms2576 [39] Politi Y, Priewasser M, Pippel E et al (2012) A spider’s fang: how to design an injection needle using chitin-based composite material. Adv Funct Mater 22(12):2519-2528 [40] Naserifar N, Leduc PR, Fedder GK (2016) Material gradients in stretchable substrates toward integrated electronic functionality. Adv Mater 28(18):3584-3591 [41] Cao Q, Gao Y, Pu J et al (2023) Gradient design of imprinted anode for stable Zn-ion batteries. Nat Commun 14(1):641. https://doi.org/10.1038/s41467-023-36386-3 [42] Wu J, Ju Z, Zhang X et al (2022) Gradient design for high-energy and high-power batteries. Adv Mater 34(29):2202780. https://doi.org/10.1002/adma.202202780 [43] Miao L, Guo H, Wan J et al (2020) Localized modulus-controlled PDMS substrate for 2D and 3D stretchable electronics. J Micromech Microeng 30(4):045001. https://doi.org/10.1088/1361-6439/ab5ec0 [44] Libanori R, Erb RM, Reiser A et al (2012) Stretchable heterogeneous composites with extreme mechanical gradients. Nat Commun 3(1):1265. https://doi.org/10.1038/ncomms2281 |