Advances in Manufacturing ›› 2025, Vol. 13 ›› Issue (1): 43-68.doi: 10.1007/s40436-024-00518-9
Xiao-Fei Lei1, Wen-Feng Ding1, Biao Zhao1, Chuan Qian1, Zi-Ang Liu1, Qi Liu2, Dong-Dong Xu3, Yan-Jun Zhao4, Jian-Hui Zhu4
Received:
2023-12-12
Revised:
2024-01-16
Published:
2025-02-26
Contact:
Wen-Feng DING,E-mail:dingwf2000@vip.163.com
E-mail:dingwf2000@vip.163.com
Supported by:
Xiao-Fei Lei, Wen-Feng Ding, Biao Zhao, Chuan Qian, Zi-Ang Liu, Qi Liu, Dong-Dong Xu, Yan-Jun Zhao, Jian-Hui Zhu. Grinding of particle-reinforced metal matrix composite materials: current status and prospects[J]. Advances in Manufacturing, 2025, 13(1): 43-68.
[1] Bagheri GHA (2016) The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles. J Alloy Compd 676:120-126 [2] Giugliano D, Cho NK, Chen H et al (2019) Cyclic plasticity and creep-cyclic plasticity behaviours of the SiC/Ti-6242 particulate reinforced titanium matrix composites under thermo-mechanical loadings. Compos Struct 218:204-216 [3] Albert T, Sunil J, Christopher AS et al (2021) Preparation and characterization of aluminium-titanium carbide (Al-TiC) composite using powder metallurgy. Mater Today Proc 37:1558-1561 [4] Mao JH, Zhang YX, Wei XH et al (2022) 6061Al/Al2O3 microstructure and properties of metal matrix composite materials. Chin Metall 32(3):43-48 [5] Ekici R, Kosedag E, Demir M (2022) Repeated low-velocity impact responses of SiC particle reinforced Al metal-matrix composites. Ceram Int 48(4):5338-5351 [6] Commisso MS, Bourlot CL, Bonnet F et al (2019) Thermo-mechanical characterization of steel-matrix metal matrix composite reinforced with TiB2 particles using synchrotron X-ray diffraction. Materialia 6:100311. https://doi.org/10.1016/j.mtla.2019.100311 [7] Shunmugasundaram M, Reddy MY, Kumar AP et al (2021) Optimization of machining parameters by Taguchi approach for machining of aluminium matrix metal matrix composite by abrasive water jet machining process. Mater Today Proc 47:5928-5933 [8] Li MJ, Han HB, Jiang XY et al (2022) Surface morphology and defect characterization during high-power fiber laser cutting of SiC particles reinforced aluminum metal matrix composite. Opt Laser Technol 155:108419. https://doi.org/10.1016/j.optlastec.2022.108419 [9] Kumar SP, Shata AS, Kumar KVP et al (2022) Effect on abrasive water jet machining of aluminum alloy 7475 composites reinforced with CNT particles. Mater Today Proc 59:1463-1471 [10] Zhang HZ, Li C, Zhang L et al (2022) Effect of laser pulse energy deposition method on nanosecond laser scanning ablation of SiCp/AA2024 composites. J Manuf Process 83:695-704 [11] Hackert-Oschätzchen M, Lehnert N, Martin A et al (2016) Surface characterization of particle reinforced aluminum-matrix composites finished by pulsed electrochemical machining. Procedia CIRP 45:351-354 [12] Sidhu SS, Bains PS (2017) Study of the recast layer of particulate reinforced metal matrix composites machined by EDM. Mater Today Proc 4(2):3243-3251 [13] Bodukuri AK, Chandramouli S, Eswaraiah K et al (2018) Experimental investigation and optimization of EDM process parameters on aluminum metal matrix composite. Mater Today Proc 5(11):24731-24740 [14] Malhotra P, Tyagi RK, Singh NK et al (2020) Experimental investigation and effects of process parameters on EDM of Al7075/SiC composite reinforced with magnesium particles. Mater Today Proc 21:1496-1501 [15] Arumugam R, Rajalingam M (2020) A review on the effect of electro chemical machining on metal matrix composite materials. Mater Today Proc 33:3854-3857 [16] Zhao GL, Zhao B, Ding WF et al (2024) Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis. Int J Extrem Manuf 6(2):022007. https://doi.org/10.1088/2631-7990/ad16d6 [17] Demirci I, Mezghani S, Mkaddem A et al (2010) Effects of abrasive tools on surface finishing under brittle-ductile grinding regimes when manufacturing glass. J Mater Process Technol 210(3):466-473 [18] Cheng J, Gong YD, Yan XQ et al (2013) Modeling and experimental study of composite critical conditions in the ductile domain of micro grinding of hard and brittle materials. Chin J Mech Eng 49(23):191-198 [19] Li Z, Liu F, Wen ZH (2021) Research progress on the ductility domain of grinding hard and brittle materials. Mach Tool Hydraul 49(9):177-181 [20] Zhang YB, Li CH, Ji HJ et al (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81-97 [21] Tian XL, Wang L, Liu Q et al (2018) Construction and analysis of grinding force model of 20CrMnTi steel tooth surface. Chin J Mech Eng 54(3):227-232 [22] Yan YY, Wang XX, Zhao B et al (2021) Experimental study on residual stress on the surface of TC4 titanium alloy during longitudinal torsional ultrasonic grinding. Surf Technol 50(12):119-129 [23] Lei XF, Xiang DH, Peng PC et al (2022) Establishment of dynamic grinding force model for ultrasonic-assisted single abrasive high-speed grinding. J Mater Process Technol 300:117420. https://doi.org/10.1016/j.jmatprotec.2021.117420 [24] Lin KY, Wang WH, Jiang RS et al (2017) Grindability and surface integrity of in situ TiB2 particle reinforced aluminum matrix composites. Int J Adv Manuf Technol 88(1):887-898 [25] Anand RB, Vijayaraghavan L, Krishnamurthy R (2010) Chip morphology: an indicator of response of composite material to grinding. Int J Mater Prod Technol 37(1/2):71-82 [26] Huang ST, Yu XL, Wang FS et al (2015) A study on chip shape and chip-forming mechanism in grinding of high-volume fraction SiC particle reinforced Al-matrix composites. Int J Adv Manuf Technol 80(9):1927-1932 [27] Yu XL, Zhao WZ, Huang ST et al (2012) Mechanism of surface formation in grinding high-volume fraction SiCp/Al composite materials. J Shenyang Univ Technol 34(6):666-670 [28] Li JG, Du JG, Yao YX et al (2014) Experimental study of machinability in mill-grinding of SiCp/Al composites. J Wuhan Univ Technol- Mater Sci Ed 29(6):1104-1110 [29] Zhao B, Ding WF, Dai JB et al (2014) A comparison between conventional speed grinding and super high-speed grinding of (TiCp+ TiBw)/Ti-6Al-4V composites using vitrified CBN wheel. Int J Adv Manuf Technol 72(1):69-75 [30] Guan JL, Zhao XH, Ren Y et al (2017) Design of ELID precision grinding machine for SiCp/Al composite materials used in aerospace. Mod Mach Tools Autom Process Technol 1:134-137 [31] Du JG, Ming WY, Cao Y et al (2019) Particle removal mechanism of high-volume fraction SiCp/Al composites by single diamond grit tool. J Wuhan Univ Technol-Mater Sci Ed 34(2):324-331 [32] Xi XX, Ding WF, Li Z et al (2017) High-speed grinding of particulate reinforced titanium matrix composites using a monolayer brazed cubic boron nitride wheel. Int J Adv Manuf Technol 90(5):1529-1538 [33] Li Z, Ding WF, Xu JH et al (2017) Research on creep feed deep grinding of particle reinforced titanium matrix composites. Aviat Manuf Technol Z1:48-54 [34] Zhou H, Ding WF, Liu CJ (2019) Material removal mechanism of PTMCs in high-speed grinding when considering consecutive action of two abrasive grains. Int J Adv Manuf Technol 100(1):153-165 [35] Liu CJ (2019) Simulation analysis of grinding force in high-speed grinding of titanium matrix composite materials. Mech Manuf Autom 48(2):89-93 [36] Zhang ZZ, Yao P, Wang J et al (2019) Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material. Int J Mech Sci 157:243-253 [37] Su C, Wang C, Sun XS et al (2019) Study on grinding mechanism of brake pad with copper matrix composites for high-speed train. Adv Mater Sci Eng 2019:1-8 [38] Huang ST, Zhou L, Yu XL et al (2012) Study of the mechanism of ductile-regime grinding of SiCp/Al composites using finite element simulation. Int J Mater Res 103(10):1210-1217 [39] Du JG, Zhang HZ, He WB et al (2019) Simulation and experimental study on surface formation mechanism in machining of SiCp/Al composites. Appl Compos Mater 26(1):29-40 [40] Huang BT, Zhang YB, Wang XM et al (2021) Experimental evaluation of wear mechanism and grinding performance of SG wheel in machining nickel-based alloy GH4169. Surf Technol 50(12):62-70 [41] Li BK, Ding WF, Ma YY et al (2021) Performance evaluation of GH4169 nickel-matrix high-temperature alloy ground with a new type of corundum grinding wheel. Aero Manuf Technol 64(4):14-19 [42] Dai CW, Yin Z, Ding WF et al (2019) Grinding force and energy modeling of textured monolayer CBN wheels considering undeformed chip thickness nonuniformity. Int J Mech Sci 157:221-230 [43] Badger J, Murphy S, O’Donnell GE (2021) Big-and-dull or small-and-sharp: a comparison of specific energy, wheel wear, surface-generation mechanisms and surface characteristics when grinding with Al2O3 and CBN to achieve a given surface roughness. J Mater Process Technol 288:116825. https://doi.org/10.1016/j.jmatprotec.2020.116825 [44] Feng R (2022) Research on grinding force of diamond grinding wheel in grinding titanium alloy. Diam Abras Eng 42(2):193-200 [45] Zhou M, Zheng W (2016) A model for grinding forces prediction in ultrasonic vibration-assisted grinding of SiCp/Al composites. Int J Adv Manuf Technol 87(9):3211-3224 [46] Yin GQ, Wang D, Cheng J (2019) Experimental investigation on micro-grinding of SiCp/Al metal matrix composites. Int J Adv Manuf Technol 102(9):3503-3517 [47] Guo S, Lu SX, Zhang B et al (2022) Surface integrity and material removal mechanisms in high-speed grinding of Al/SiCp metal matrix composites. Int J Mach Tool Manuf 178:103906. https://doi.org/10.1016/j.ijmachtools.2022.103906 [48] Lu SX, Gao H, Bao YJ et al (2019) A model for force prediction in grinding holes of SiCp/Al composites. Int J Mech Sci 160:1-14 [49] Cao GX, Dong ZG, Zhang ZH et al (2023) Construction and experimental study of end grinding force model for SiCp/Al composite materials. Diam Abras Eng 43(3):340-347 [50] Zhou L, Huang ST, Yu XL (2014) Machining characteristics in cryogenic grinding of SiCp/Al composites. Acta Metall Sin (Eng Lett) 27(5):869-874 [51] Gu P, Zhu CM, Tao Z et al (2020) A grinding force prediction model for SiCp/Al composite based on single-abrasive-grain grinding. Int J Adv Manuf Technol 109(5):1563-1581 [52] Gu P, Zhu CM, Tao Z et al (2021) Micro-removal mechanism of high-volume fraction SiCp/Al composite in grinding based on cohesive theory. Int J Adv Manuf Technol 117(1):243-265 [53] Guo GY, Gao Q, Wang QZ et al (2023) Study on grinding force of high-volume fraction SiCp/Al2024 composites. Int J Adv Manuf Technol 124:3813-3822 [54] Ren XK, Huang H, Su ZF (2022) Experimental study on grinding force during axial feed grinding of hard alloys with diamond grinding wheels. Diam Abras Eng 42(5):567-577 [55] Du JG, Li JG, Yao YX et al (2014) Prediction of cutting forces in mill-grinding SiCp/Al composites. Mater Manuf Process 29(3):314-320 [56] Kang KY, Yu GY, Yang WP et al (2023) Experimental study on creep-feed grinding burn of DD9 nickel-based single crystal superalloy. Diam Abras Eng 43(3):355-363 [57] Lin B, Zhou K, Guo J et al (2018) Influence of grinding parameters on surface temperature and burn behaviors of grinding rail. Tribol Int 122:151-162 [58] Zhao ZC, Qian N, Ding WF et al (2020) Profile grinding of DZ125 nickel-matrix superalloy: grinding heat, temperature field, and surface quality. J Manuf Process 57:10-22 [59] Ding WF, Li M, Li BK et al (2021) Research progress on surface integrity during grinding of difficult to machine metal materials. J Aerosp Mater 41(4):36-56 [60] Wang L, Wang LY, Tang XJ et al (2022) Construction and analysis of a grinding temperature model for gear grinding using the forming method. Chin J Mech Eng 58(3):295-304 [61] Li YQ, Xiao G, Li T (2019) Surface residual stress of GCr15 bearing steel in ultrasonic vibration assisted grinding. Mech Eng Mater 43(6):50-52 [62] Zhao B, Guo XC, Bie WB et al (2020) Thermo-mechanical coupling effect on surface residual stress during ultrasonic vibration-assisted forming grinding gear. J Manuf Process 59:19-32 [63] Wang D, Zhang JT, Lin HX et al (2021) Research on the effect of outer circular grinding temperature on surface residual stress of 18CrNiMo7-6. Modul Mach Tool Autom Process Technol (12): 132-135,139 [64] Chen T, Miao Q, Xiong MY et al (2022) On the residual stresses of turbine blade root of γ-TiAl intermetallic alloys induced by non-steady-state creep feed profile grinding. J Manuf Process 82:800-817 [65] Zhang YX, Yuan SS, Wang ZL et al (2021) Experimental analysis of residual stress and hardness in high-speed cylindrical grinding of 18CrNiMo7-6 steel. Diam Abras Eng 41(1):65-70 [66] Li DP, Li ZK (2009) Research on surface quality and grinding force of particle reinforced aluminum matrix composite materials during grinding. Mod Manuf Eng 9:93-95 [67] Shi L, Zhou L, Xu LF et al (2011) Experiment analysis on grinding force of SiCp/Al. Manuf Technol Mach Tools 12:184-187 [68] Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2012) Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms. J Braz Soc Mech Sci Eng 34:32-40 [69] Zhang CY, Sun Y, Zhao LG (2013) Simulation study on single diamond grinding of SiCp/Al composite materials. Tool Technol 47(11):15-18 [70] Zhong ZW (2003) Grinding of aluminium-matrix metal matrix composites reinforced with Al2O3 or SiC particles. Int J Adv Manuf Technol 21(2):79-83 [71] Chen X, Chen LY, Chen H et al (2022) Meso-scale numerical simulation and experimental verification of single grain grinding TiC-Fe composites. Ceram Int 48(9):12299-12310 [72] Ding WF, Zhao B, Xu JH et al (2014) Grinding behavior and surface appearance of (TiCp + TiBw)/Ti-6Al-4V titanium matrix composites. Chin J Aeronaut 27(5):1334-1342 [73] Li Z, Ding WF, Liu CJ et al (2018) Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding. Int J Adv Manuf Technol 94(9):3917-3928 [74] Huang ST, Yu XL (2018) A study of grinding forces of SiCp/Al composites. Int J Adv Manuf Technol 94(9):3633-3639 [75] Blau PJ, Jolly BC (2009) Relationships between abrasive wear, hardness, and grinding characteristics of titanium-matrix metal-matrix composites. J Mater Eng Perform 18(4):424-432 [76] Ponappa K, Aravindan S, Rao PV (2012) Grinding of magnesium/Y2O3 metal matrix composites. Proc Inst Mech Eng Part B J Eng Manuf 226(10):1675-1683 [77] Ronald BA, Vijayaraghavan L, Krishnamurthy R (2009) Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites. Mater Des 30(3):679-686 [78] Li Z, Ding WF, Shen L et al (2016) Comparative investigation on high-speed grinding of TiCp/Ti-6Al-4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels. Chin J Aeronaut 29(5):1414-1424 [79] Zhao B, Ding WF, Xu JH et al (2009) Comparative study on cutting behavior of vitrified cubic boron nitride wheel and electroplated cubic boron nitride wheel in high-speed grinding of (TiCp+ TiBw)/Ti-6Al-4V composites. Proc Inst Mech Eng Part B J Eng Manuf 230(3):428-438 [80] Li DP (2011) Research on grinding temperature of SiC particle reinforced aluminum matrix composite materials. J Harbin Commer Univ Nat Sci Ed 27(4):638-640 [81] Zhou L, Huang ST, Zhang CY (2013) Numerical and experimental studies on the temperature field in precision grinding of SiCp/Al composites. Int J Adv Manuf Technol 67(5):1007-1014 [82] Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2011) Experimental evaluation of grinding forces and surface finish in cylindrical grinding of Al/SiC metal matrix composites. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1606-1614 [83] Zhu C, Gu P, Wu Y et al (2020) Grinding temperature prediction model of high-volume fraction SiCp/Al composite. Int J Adv Manuf Technol 111(5):1201-1220 [84] Wang M, Zheng W, Zhou M et al (2019) Rotary ultrasonic machining of SiCp/Al composites: an experimental study on cutting force and machinability. Adv Mech Eng 11(12):1687814019898329. https://doi.org/10.1177/168781401989832 [85] Kadivar M, Azarhoushang B, Daneshi A et al (2020) Surface integrity in micro-grinding of Ti6Al4V considering the specific micro-grinding energy. Procedia CIRP 87:181-185 [86] Wang KC, Yi P, Zhu YJ et al (2021) Research on grinding performance and parameter optimization of nickel based high temperature alloy K4125. Aero Manuf Technol 64(07):81-87 [87] Kadivar M, Azarhoushang B, Klement U et al (2021) The role of specific energy in micro-grinding of titanium alloy. Precis Eng 72:172-183 [88] Liu W, Shi XY, Li XC et al (2022) Prediction of specific energy for high-speed cylindrical grinding of alloy steel 40CrNiMoA. J Mech Sci Technol 41(1):98-103 [89] Zhou H, Ding WF, Li Z et al (2019) Predicting the grinding force of titanium matrix composites using the genetic algorithm optimizing back-propagation neural network model. Proc Inst Mech Eng Part B J Eng Manuf 233(4):1157-1167 [90] Wu BF, Zhao B, Ding WF et al (2021) Investigation of the wear characteristics of microcrystal alumina abrasive wheels during the ultrasonic vibration-assisted grinding of PTMCs. Wear 477:203844. https://doi.org/10.1016/j.wear.2021.203844 [91] Zhou WH, Tang JY, Shao W (2020) Study on surface generation mechanism and roughness distribution in gear profile grinding. Int J Mech Sci 187:105921. https://doi.org/10.1016/j.ijmecsci.2020.105921 [92] Xiang DH, Lei XF, Peng PC et al (2021) Research on the surface characteristics of ultrasonic vibration assisted ELID grinding hardened 12Cr2Ni4A alloy steel. Surf Technol 50(9):333-341 [93] Wang TT, Zou L, Wan QH et al (2021) A high-precision prediction model of surface roughness in abrasive belt flexible grinding of aero-engine blade. J Manuf Process 66:364-375 [94] Zhu CM, Gu P, Wu YY et al (2019) Surface roughness prediction model of SiCp/Al composite in grinding. Int J Mech Sci 155:98-109 [95] Kwak JS, Kim YS (2008) Mechanical properties and grinding performance on aluminum-matrix metal matrix composites. J Mater Process Technol 201(1/3):596-600 [96] DiIlio A, Paoletti A, D’Addona D (2009) Characterization and modelling of the grinding process of metal matrix composites. CIRP Ann Manuf Technol 58(1):291-294 [97] Zhao X, Gong YD, Liang GQ et al (2021) Face grinding surface quality of high-volume fraction SiCp/Al composite materials. Chin J Mech Eng 34(1):1-14 [98] Wang KF, Hu YK, Zheng XJ et al (2012) Experimental study on ultrasonic vibration grinding of SiCp/ZL101A composite materials. Weapon Mater Sci Eng 35(1):39-43 [99] Li Z, Ding WF, Zhou H et al (2020) Research on high-speed grinding temperature of particle reinforced titanium matrix composite based on hybrid material model. Chin J Mech Eng 55(21):186-198 [100] Xiang DH, Ma GF, Zhang YL et al (2015) Experimental study on ultrasonic assisted grinding of silicon carbide aluminum matrix composite materials to improve wheel blockage. Manuf Technol Mach Tools 6:124-128 [101] Wang YX, Li X, Bai F (2018) Research on spiral grinding method for internal thread of SiCp/Al composite material. Aviat Manuf Technol 61(1/2):88-92 [102] Zhang YQ, Zhou CX, Lin KY et al (2017) Study on the grinding surface quality of In-situ TiB2/Al composite materials. Aviat Manuf Technol 60(17):101-106 [103] Qin SQ, Zhu LD, Hao YP et al (2023) Theoretical and experimental investigations of surface generation induced by ultrasonic assisted grinding. Tribol Int 179:108120. https://doi.org/10.1016/j.triboint.2022.108120 [104] Zhou M, Wang M, Dong G (2016) Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites. Mater Manuf Process 31(5):673-678 [105] Gu P, Zhu CM, Sun YC et al (2023) Surface roughness prediction of SiCp/Al composites in ultrasonic vibration-assisted grinding. J Manuf Process 101:687-700 [106] Liang G, Zhou X, Zhao F (2016) The grinding surface characteristics and evaluation of particle-reinforced aluminum silicon carbide. Sci Eng Compos Mater 23(6):671-676 [107] Ding WF, Cao Y, Zhao B et al (2022) Current status and prospects of research on ultrasonic vibration-assisted grinding processing technology and equipment. Chin J Mech Eng 58(9):244-269 [108] Cao Y, Ding WF, Zhao B et al (2022) Effect of intermittent cutting behavior on the ultrasonic vibration-assisted grinding performance of Inconel718 nickel-matrix superalloy. Precis Eng 78:248-260 [109] Naskar A, Choudhary A, Paul S (2021) Surface generation in ultrasonic-assisted high-speed super-abrasive grinding under minimum quantity cooling lubrication with various fluids. Tribo Int 156:106815. https://doi.org/10.1016/j.triboint.2020.106815 [110] Chen YR, Su HH, Qian N et al (2021) Ultrasonic vibration-assisted grinding of silicon carbide ceramics based on actual amplitude measurement: grinding force and surface quality. Ceram Int 47(11):15433-15441 [111] Li HB, Chen T, Duan ZY et al (2022) A grinding force model in two-dimensional ultrasonic-assisted grinding of silicon carbide. J Mater Process Technol 304:117568. https://doi.org/10.1016/j.jmatprotec.2022.117568 [112] Dong GJ, Wang L, Gao SD (2022) A grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites. Diam Abras Eng 42(1):97-103 [113] Wang WL, Wang ZL, Zhang CR et al (2016) Experimental study on rotating ultrasonic assisted grinding of SiCp/Al composite materials. Dev Innov Mech Electr Prod 4:113-114 [114] Zheng W, Zhou M, Ling L et al (2018) Prediction of grinding force in ultrasonic vibration assisted machining of SiCp/Al Composite Materials. J Northwest Polytech Univ 36:86-92 [115] Zhang WC, Wang S (2023) Experimental study on multi-objective optimization of small hole EDM machining of TC4 titanium alloy. Mech Sci Technol Aero Eng 42(1):113-118 [116] Gao SJ (2022) Research on titanium alloy Ti-6Al-4V electric discharge wire cutting technology. Hot Work Technol 51(17):125-129,134 [117] Sahoo R, Singh NK, Bajpai V (2023) A novel approach for modeling MRR in EDM process using utilized discharge energy. Mech Syst Signal Process 185:109811. https://doi.org/10.1016/j.ymssp.2022.109811 [118] Mu X, Zhou M, Zhang J et al (2022) Intelligent electrical discharge machining molybdenum-titanium-zirconium alloy by an extended adaptive control system. J Manuf Process 77:207-218 [119] Choudhary SK, Jadoun RS, Singh P (2022) Optimization of EDM process parameters for TWR on machining of inconel 600 superalloy using Taguchi approach. Mater Today Proc 57:2281-2288 [120] Kumar H, Choudhary R, Singh S (2014) Experimental and morphological investigations into electrical discharge surface grinding (EDSG) of 6061Al/Al2O3 10% composite by composite tool electrode. J Mater Eng Perform 23(4):1489-1497 [121] Agrawal SS, Yadava V (2013) Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites. Mater Manuf Process 28(4):381-389 [122] Yadav RN, Yadava V (2013) Multiobjective optimization of slotted electrical discharge abrasive grinding of metal matrix composite using artificial neural network and nondominated sorting genetic algorithm. Proc Inst Mech Eng Part B J Eng Manuf 227(10):1442-1452 [123] Yadav RN, Yadava V (2014) Slotted-electrical discharge diamond cut-off grinding of Al/SiC/B4C hybrid metal matrix composite. J Mech Sci Technol 28(1):309-316 [124] Liu JW, Wu YZ, Yue TM (2015) High speed abrasive electrical discharge machining of particulate reinforced metal matrix composites. Int J Precis Eng Manuf 16(7):1399-1404 [125] Grewal GS, Dhiman DP (2019) Effect of deep cryogenic treatment on copper electrode for non-traditional electric discharge machining (EDM). Mech Sci 10(2):413-427 [126] Fathima K, Schinhaerl M, Geiss A et al (2009) A knowledge based feed-back control system for precision ELID grinding. Precis Eng 34(1):124-132 [127] Wu QP, Wang Y, Zhao H et al (2018) Research on precision grinding of ultrafine grain cemented carbide based on online electrolytic dressing technology of multilayer brazed diamond grinding wheel. Chin J Mech Eng 54(21):212-220 [128] Chen F, Li GX, Zhao B et al (2021) Thermomechanical coupling effect on characteristics of oxide film during ultrasonic vibration-assisted ELID grinding ZTA ceramics. Chin J Aeronaut 34(6):125-140 [129] Lei XF, Xiang DH, Peng PC et al (2022) Study on surface residual stress of hardened 12Cr2Ni4A alloy steel by ultrasonic vibration-assisted ELID grinding. Int J Adv Manuf Technol 18(1):641-649 [130] Shanawaz AM, Sundaram S, Pillai UTS et al (2011) Grinding of aluminium silicon carbide metal matrix composite materials by electrolytic in-process dressing grinding. Int J Adv Manuf Technol 57(1):143-150 [131] Shanawaz AM, Sundaram S, Pillai UTS et al (2011) Characteristics of electrolysis in-process dressing grinding of Al/SiCp composite materials. J Compos Mater 45(3):357-367 [132] Kwak TS (2012) Properties of Mirror-surface grinding for metal matrix ceramic composites. J Korean Ceram Soc 49(1):90-94 [133] Guan JL, Zhu L, Chen L et al (2015) Research on the mechanism of efficient grinding surface formation of SiCp/Al composite materials by ELID. Manuf Technol Mach Tools 6:129-132 [134] Guan JL, Zhang Y, Hu ZY et al (2018) SiCP/Al composite material ELID grinding and process parameter optimization. Tool Technol 52(6):50-54 [135] Guan JL, Zhang LY, Liu SJ et al (2019) Research on ELID grinding mechanism and process parameter optimization of aluminum-matrix diamond composites for electronic packaging. Sci Eng Compos Mater 26(1):550-562 [136] Li KY, Zhang YP, Yang GM et al (2014) Research on ultrasonic vibration grinding and discharge machining of particle reinforced metal matrix composite materials. Hot Work Process 43(16):123-127 [137] Liu JW, Yue TM, Guo ZN (2013) Grinding-aided electrochemical discharge machining of particulate reinforced metal matrix composites. IntJ Adv Manuf Technol 68(9):2349-2357 [138] Liu JW, Lin ZB, Guo ZN et al (2018) A study of the materials removal mechanism of grinding-aided electrochemical discharge machining of metal matrix composites. Adv Compos Lett 27(5):204-211 |
[1] | Ming-Hui Fang, Tao Yu, Feng-Feng Xi. Effect of back pressure on the grinding performance of abrasive suspension flow machining [J]. Advances in Manufacturing, 2022, 10(1): 143-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn