[1] O’Toole L, Fang FZ (2023) Optimal tool design in micro-milling of difficult-to-machine materials. Adv Manuf 11(2):222-247 [2] Chen N, Li HN, Wu JM et al (2021) Advances in micro milling: from tool fabrication to process outcomes. Int J Mach Tool Manu 160:103670. https://doi.org/10.1016/j.ijmachtools.2020.103670 [3] Ahmed F, Ahmad F, Kumaran ST et al (2023) Development of cryogenic assisted machining strategy to reduce the burr formation during micro-milling of ductile material. J Manuf Process 85:43-51 [4] Jia ZY, Lu XH, Gu H et al (2021) Deflection prediction of micro-milling Inconel 718 thin-walled parts. J Mater Process Tech 291:11700. https://doi.org/10.1016/j.jmatprotec.2020.117003 [5] Zhao GL, Zhao B, Ding WF et al (2024) Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis. Int J Extrem Manuf 6(2):022007. https://doi.org/10.1088/2631-7990/ad16d6 [6] Gong P, Zhang Y, Wang C et al (2024) Residual stress generation in grinding: mechanism and modeling. J Mater Process Tech 324:118262. https://doi.org/10.1016/j.jmatprotec.2023.118262 [7] Yu WW, Chen J, Ming WW et al (2022) Feasibility of supercritical CO-based minimum quantity lubrication to improve the surface integrity of 50% Sip/Al composites. J Manuf Process 73:364-374 [8] Saha S, Deb S, Bandyopadhyay PP (2020) An analytical approach to assess the variation of lubricant supply to the cutting tool during MQL assisted high speed micromilling. J Mater Process Tech 285:116783. https://doi.org/10.1016/j.jmatprotec.2020.116783 [9] Cai CY, An QL, Ming WW et al (2022) Microstructure- and cooling/lubrication environment-dependent machining responses in side milling of direct metal laser-sintered and rolled Ti6Al4V alloys. J Mater Process Tech 300:117418. https://doi.org/10.1016/j.jmatprotec.2021.117418 [10] Liu MZ, Li CH, Zhang YB et al (2021) Cryogenic minimum quantity lubrication machining: from mechanism to application. Front Mech Eng-Prc 16(4):649-697 [11] Khanna N, Airao J, Kshitij G et al (2023) Sustainability analysis of new hybrid cooling/lubrication strategies during machining Ti6Al4V and Inconel 718 alloys. Sustain Mater Technol 36:e00606. https://doi.org/10.1016/j.susmat.2023.e00606 [12] Das CR, Ghosh A (2023) Performance of carbide end mills coated with new generation nano-composite TiAlSiN in machining of austenitic stainless steel under near-dry (MQL) and flood cooling conditions. J Manuf Process 104:418-442 [13] Liu M, Li C, Yang M et al (2023) Mechanism and enhanced grindability of cryogenic air combined with biolubricant grinding titanium alloy. Tribol Int 187:108704. https://doi.org/10.1016/j.triboint.2023.108704 [14] Qu SS, Yao P, Gong YD et al (2022) Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology. J Clean Prod 366:132898. https://doi.org/10.1016/j.jclepro.2022.132898 [15] Sen B, Mia M, Krolczyk GM et al (2021) Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing. Int J Pr Eng Man-Gt 8(1):249-280 [16] Rajaguru J, Arunachalam N (2020) A comprehensive investigation on the effect of flood and MQL coolant on the machinability and stress corrosion cracking of super duplex stainless steel. J Mater Process Technol 276:116417. https://doi.org/10.1016/j.jmatprotec.2019.116417 [17] Cai LE, Feng YX, Liang SY (2022) Analytical modeling of residual stress in end-milling with minimum quantity lubrication. Mech Ind 23:7. https://doi.org/10.1051/meca/2022005 [18] Cui X, Li CH, Ding WF et al (2022) Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: From mechanisms to application. Chin J Aeronaut 35(11):85-112 [19] Chu A, Li C, Zhou Z et al (2023) Nanofluids minimal quantity lubrication machining: from mechanisms to application. Lubricants 11(10):422. https://doi.org/10.3390/lubricants11100422 [20] Cui X, Li C, Yang M et al (2023) Enhanced grindability and mechanism in the magnetic traction nanolubricant grinding of Ti-6Al-4V. Tribol Int 186:108603. https://doi.org/10.1016/j.triboint.2023.108603 [21] Çamli KY, Demirsöz R, Boy M et al (2022) Performance of MQL and nano-MQL lubrication in machining ER7 steel for train wheel applications. Lubricants 10(4):48. https://doi.org/10.3390/lubricants10040048 [22] Songmei Y, Xuebo H, Guangyuan Z et al (2017) A novel approach of applying copper nanoparticles in minimum quantity lubrication for milling of Ti-6Al-4V. Adv Prod Eng Manag 12(2):139-150 [23] Zhang YB, Li HN, Li CH et al (2023) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction 10(6):803-841 [24] Yang M, Kong M, Li C et al (2023) Temperature field model in surface grinding: a comparative assessment. Int J Extrem Manuf 5(4):042011. https://doi.org/10.1088/2631-7990/acf4d4 [25] Dambatta YS, Sayuti M, Sarhan AAD et al (2019) Tribological performance of SiO-based nanofluids in minimum quantity lubrication grinding of SiN ceramic. J Manuf Process 41:135-147 [26] Duan Z, Wang S, Wang Z et al (2024) Tool wear mechanisms in cold plasma and nano-lubricant multi-energy field coupled micro-milling of Al-Li alloy. Tribol Int 192:109337. https://doi.org/10.1016/j.triboint.2024.109337 [27] Nam J, Lee SW (2018) Machinability of titanium alloy (Ti-6Al-4V) in environmentally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodiamond particles. Int J Pr Eng Man-Gt 5(1):29-35 [28] Sirin S, Sarikaya M, Yildirim CV et al (2021) Machinability performance of nickel alloy X-750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL. Tribol Int 153:106673. https://doi.org/10.1016/j.triboint.2020.106673 [29] Abbas AT, Anwar S, Abdelnasser E et al (2021) Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316. Materials 14(4):903. https://doi.org/10.3390/ma14040903 [30] Roushan A, Rao US, Patra K et al (2022) Performance evaluation of tool coatings and nanofluid MQL on the micro-machinability of Ti-6Al-4V. J Manuf Process 73:595-610 [31] Makhesana MA, Patel KM, Krolczyk GM et al (2023) Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625. CIRP J Manuf Sci Technol 41:225-238 [32] Deng H, Yamamura K (2013) Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing. CIRP Ann-Manuf Technol 62(1):575-578 [33] Prysiazhnyi V, Slavicek P, Cernak M (2014) Aging of plasma-activated copper and gold surfaces and its hydrophilic recovery after water immersion. Thin Solid Films 550:373-380 [34] Katahira K, Ohmori H, Takesue S et al (2015) Effect of atmospheric-pressure plasma jet on polycrystalline diamond micro-milling of silicon carbide. CIRP Ann-Manuf Technol 64(1):129-132 [35] Bastawros AF, Chandra A, Poosarla PA (2015) Atmospheric pressure plasma enabled polishing of single crystal sapphire. CIRP Ann-Manuf Technol 64(1):515-518 [36] Yamamura K, Emori K, Sun R et al (2018) Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing. CIRP Ann-Manuf Technol 67(1):353-356 [37] Sun RY, Yang X, Arima K et al (2020) High-quality plasma-assisted polishing of aluminum nitride ceramic. CIRP Ann-Manuf Technol 69(1):301-304 [38] Hu YZ, Meng JB, Luan XS et al (2021) Micromilling of Ti6Al4V alloy assisted by plasma electrolytic oxidation. J Micromech Microeng 31(1):015004. https://doi.org/10.1088/1361-6439/abc9f6 [39] Cao Y, Ding WF, Zhao BA et al (2022) Effect of intermittent cutting behavior on the ultrasonic vibration-assisted grinding performance of Inconel 718 nickel-based superalloy. Precis Eng 78:248-260 [40] Gupta MK, Song QH, Liu ZQ et al (2021) Experimental characterisation of the performance of hybrid cryo-lubrication assisted turning of Ti-6Al-4V alloy. Tribol Int 153:106582. https://doi.org/10.1016/j.triboint.2020.106582 [41] Xu W, Li C, Cui X et al (2023) Atomization mechanism and machinability evaluation with electrically charged nanolubricant grinding of GH4169. J Manuf Process 106:480-493 [42] Duan ZJ, Yin QG, Li CH et al (2020) Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations. Int J Adv Manuf Tech 107(3/4):1277-1296 [43] Gao T, Li CH, Zhang YB et al (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51-63 [44] Liu X, Wang BQ, Li YH et al (2023) Improving machinability of single-crystal silicon by cold plasma jet. J Manuf Process 99:581-591 [45] Liu JY, Song JL, Chen Y et al (2021) Atmospheric pressure cold plasma jet-assisted micro-milling TC4 titanium alloy. Int J Adv Manuf Tech 112(7/8):2201-2209 [46] Sousa VFC, Silva FJG, Alexandre R et al (2023) Experimental study on the wear evolution of different PVD coated tools under milling operations of LDX2101 duplex stainless steel. Adv Manuf 11(1):158-179 [47] Xu Q, Xiao S, Wang YQ et al (2024) Wear-induced variation of surface roughness in grinding 2.5D Cf/SiC composites. Int J Mech Sci 264:108811. https://doi.org/10.1016/j.ijmecsci.2023.108811 [48] Xu Q, Xiao S, Gao H et al (2022) The propagation of fibre-matrix interface debonding during CFRP edge milling process with the multi-teeth tool: a model analysis. Compos Part A Appl S 160:107050. https://doi.org/10.1016/j.compositesa.2022.107050 [49] Qu SS, Yao P, Gong YD et al (2022) Modelling and grinding characteristics of unidirectional C-SiCs. Ceram Int 48(6):8314-8324 [50] Jamil M, Zhao W, He N et al (2021) Sustainable milling of Ti-6Al-4V: a trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J Clean Prod 281:125374. https://doi.org/10.1016/j.jclepro.2020.125374 [51] Yuan H, Li YL, Liu YY et al (2023) Improving the forming performance of incrementally formed sheet parts with customized heat treatment strategies. Adv Manuf 11(2):264-279 [52] Roushan A, Rao US, Sahoo P et al (2023) Wear behavior of AlTiN coated WC tools in micromilling of Ti6Al4V alloy using vegetable oil-based nanofluids. Tribol Int 188:108825. https://doi.org/10.1016/j.triboint.2023.108825 [53] Niu ZC, Cheng K (2020) Improved dynamic cutting force modelling in micro milling of metal matrix composites Part I: theoretical model and simulations. P I Mech Eng C-J Mec 234(9):1733-1745 [54] Niu ZC, Cheng K (2020) Improved dynamic cutting force modelling in micro milling of metal matrix composites Part II: experimental validation and prediction. P I Mech Eng C-J Mec 234(8):1500-1515 [55] Yin QA, Liu ZQ, Wang B (2023) Prediction of temperature field in machined workpiece surface during the cutting of Inconel 718 coated with surface-active media. Adv Manuf 11(3):378-389 [56] Gajrani KK, Suvin PS, Kailas SV et al (2019) Thermal, rheological, wettability and hard machining performance of MoS2 and CaF2 based minimum quantity hybrid nano-green cutting fluids. J Mater Process Tech 266:125-139 [57] Jiao D, Zheng SH, Wang YZ et al (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257(13):5720-5725 [58] Mao C, Tang XJ, Zou HF et al (2012) Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J Precis Eng Man 13(10):1745-1752 [59] Haq MA, Hussain S, Ali MA et al (2021) Evaluating the effects of nano-fluids based MQL milling of IN718 associated to sustainable productions. J Clean Prod 310:127463. https://doi.org/10.1016/j.jclepro.2021.127463 [60] Zhang GQ, Chen H, Xiao GC et al (2022) Effect of SiC nanofluid minimum quantity lubrication on the performance of the ceramic tool in cutting hardened steel. J Manuf Process 84:539-554 [61] Rahman SS, Ashraf MZI, Amin AKMN et al (2019) Tuning nanofluids for improved lubrication performance in turning biomedical grade titanium alloy. J Clean Prod 206:180-196 [62] Sarikaya M, Sirin S, Yildirim CV et al (2021) Performance evaluation of whisker-reinforced ceramic tools under nano-sized solid lubricants assisted MQL turning of Co-based Haynes 25 superalloy. Ceram Int 47(11):15542-15560 |