[1] Sun T, Zheng W, Yu Y et al (2019) Algorithm for surfaces profiles and thickness variation measurement of a transparent plate using a Fizeau interferometer with wavelength tuning. Appl Sci 9:2349. https://doi.org/10.3390/app9112349 [2] Seo YB, Joo KN, Ghim YS et al (2021) Subaperture stitching wavelength scanning interferometry for 3D surface measurement of complex-shaped optics. Meas Sci Technol 32:045201. https://doi.org/10.1088/1361-6501/abd056 [3] Hu Y, Chen Q, Liang Y et al (2019) Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme. Opt Lasers Eng 122:1-7 [4] Park J, Kim JA, Ahn H et al (2019) A review of thickness measurements of thick transparent layers using optical interferometry. Int J Precis Eng Manuf 20:463-477 [5] Guo H, Chen M (2005) Least-squares algorithm for phase-stepping interferometry with an unknown relative step. Appl Opt 44:4854-4859 [6] Chang L, He T, Wang C et al (2022) Multi-surface phase-shifting interferometry using harmonic frequency solution based on the total least squares. Opt Lasers Eng 150:106845. https://doi.org/10.1016/j.optlaseng.2021.106845 [7] Juarez-Salazar R, Robledo-Sánchez C, Meneses-Fabian C et al (2013) Generalized phase-shifting interferometry by parameter estimation with the least squares method. Opt Lasers Eng 51:626-632 [8] Kitagawa K (2014) Surface and thickness measurement of a transparent film using three-wavelength interferometry. In: Proceedings of the 14th international conference of the European society for precision engineering and nanotechnology, 1:4172-4175 [9] Wang Z, Han B (2004) Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Opt Lett 29:1671. https://doi.org/10.1364/ol.29.001671 [10] Xu X, Lu X, Tian J et al (2016) Random phase-shifting interferometry based on independent component analysis. Opt Commun 370:75-80 [11] Chen Y, Wang T, Kemao Q (2021) Parallel advanced iterative algorithm for phase extraction with unknown phase-shifts. Opt Lasers Eng 138:106408. https://doi.org/10.1016/j.optlaseng.2020.106408 [12] Chen Y, Kemao Q (2019) Advanced iterative algorithm for phase extraction: performance evaluation and enhancement. Opt Express 27:37634. https://doi.org/10.1364/oe.27.037634 [13] Hao Q, Zhu Q, Hu Y (2009) Random phase-shifting interferometry without accurately controlling or calibrating the phase shifts. Opt Lett 34:1288. https://doi.org/10.1364/ol.34.001288 [14] Vargas J, Carazo JM, Sorzano COS (2014) Error analysis of the principal component analysis demodulation algorithm. Appl Phys B Lasers Opt 115:355-364 [15] Zhang W, Lu X, Luo C et al (2015) Principal component analysis based simultaneous dual-wavelength phase-shifting interferometry. Opt Commun 341:276-283 [16] Deng J, Wang K, Wu D et al (2015) Advanced principal component analysis method for phase reconstruction. Opt Express 23:12222. https://doi.org/10.1364/oe.23.012222 [17] Xu JC, Jin WM, Chai LQ et al (2011) Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method. Opt Express 19:20483. https://doi.org/10.1364/oe.19.020483 [18] Deng J, Wu D, Wang K et al (2016) Precise phase retrieval under harsh conditions by constructing new connected interferograms. Sci Rep 6:1-10 [19] Bai Y, He Y, Bao H et al (2015) Eigenvalue decomposition and least squares algorithm for depth resolution of wavenumber-scanning interferometry. J Opt Soc Am A 32:1352. https://doi.org/10.1364/josaa.32.001352 [20] Huang T, Bai Y, Tan J et al (2021) Estimating the number of layers for precise wavelength scanning interferometry. Meas Sci Technol 32:115203. https://doi.org/10.1088/1361-6501/ac0ad0 [21] Das S, Liu CH, Singh M et al (2018) Modified wavelength scanning interferometry for simultaneous tomography and topography of the cornea with Fourier domain optical coherence tomography. Biomed Opt Express 9:4443. https://doi.org/10.1364/boe.9.004443 [22] Kim Y, Hibino K, Sugita N et al (2015) Absolute optical thickness measurement of transparent plate using excess fraction method and wavelength-tuning Fizeau interferometer. Opt Express 23:4065. https://doi.org/10.1364/oe.23.004065 [23] Lifshitz E, Arieli U, Katz S et al (2019) High-resolution multi-scan compact Fourier transform-infrared spectrometer. Opt Lett 44:3126. https://doi.org/10.1364/ol.44.003126 [24] Padilla M, Servin M, Garnica G et al (2019) Design of robust phase-shifting algorithms using N-step formulas as building blocks. Opt Lasers Eng 121:346-351 [25] Chang L, Yu Y (2022) Wavelength-tuning phase-shifting interferometry of transparent plates using sub-signal frequency correction. Measurement 205:112157. https://doi.org/10.1016/j.measurement.2022.112157 [26] Bai Y, Zhou Y, He Z et al (2018) Wavenumber synthesis approach to high-resolution wavenumber scanning interference using a mode-hoped laser. Opt Express 26:5441. https://doi.org/10.1364/oe.26.005441 [27] Guo R, Liao Z, Li J et al (2019) Optical homogeneity measurement of parallel plates by wavelength-tuning interferometry using nonuniform fast Fourier transform. Opt Express 27:13072. https://doi.org/10.1364/oe.27.013072 [28] Samir I, Sabry YM, Fathy A et al (2019) Autoregressive superresolution microelectromechanical systems Fourier transform spectrometer. Appl Opt 58:6784. https://doi.org/10.1364/ao.58.006784 [29] Duan S, Zheng H (2023) Model parameter estimations of the multi-channel turbulence response from flutter flight tests based on autoregressive spectra. J Low Freq Noise Vib Act Control 42:173-191 [30] Xiao X, Zhou R, Ma X et al (2023) Harmonic phasor estimation method considering dense interharmonic interference. Entropy 25:236. https://doi.org/10.3390/e25020236 [31] Zhai M, Locquet A, Roquelet C et al (2020) Terahertz time-of-flight tomography beyond the axial resolution limit: autoregressive spectral estimation based on the modified covariance method. J Infrared Millim TE 41:926-939 [32] Tan J, He Z, Bai Y et al (2023) High depth resolution wavelength scanning interferometry with narrow scanning bandwidth via sinewaves separation. Opt Lasers Eng 164:107519. https://doi.org/10.1016/j.optlaseng.2023.107519 |