[1] Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput-Aided Des 42(7):641-654 [2] Sonthipermpoon K, Bohez E, Hasemann H et al (2010) The vibration behavior of impeller blades in the five-axis CNC flank milling process. Int J Adv Manuf Technol 46(9):1171-1177 [3] Li ZL, Zhu LM (2014) Envelope surface modeling and tool path optimization for five-axis flank milling considering cutter runout. J Manuf Sci Eng 136(4):041021. https://doi.org/10.1115/1.4027415 [4] Song Z, Wang L, Tao W et al (2018) The mechanism of curvature for complex surfaces during five-axis flank milling. Int J Adv Manuf Technol 94(5):1665-1676 [5] Ko JH, Yun WS, Cho DW et al (2002) Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction. Int J Mach Tools Manuf 42(15):1595-1605 [6] Yun WS, Ko JH, Cho DW et al (2002) Development of a virtual machining system, part 2: prediction and analysis of a machined surface error. Int J Mach Tools Manuf 42(15):1607-1615 [7] Merdol SD, Altintas Y (2008) Virtual cutting and optimization of three-axis milling processes. Int J Mach Tools Manuf 48(10):1063-1071 [8] OuYang D, Feng HY, Van Nest BA et al (2009) Effective gouge-free tool selection for free-form surface machining. Comput-Aided Des Appl 6(6):839-849 [9] Du J, Yan X, Tian X (2012) The avoidance of cutter gouging in five-axis machining with a fillet-end milling cutter. Int J Adv Manuf Technol 62(1):89-97 [10] Spence AD, Altintas Y (1994) A solid modeller based milling process simulation and planning system. J Manuf Sci Eng 116(1):61-69 [11] El-Mounayri H, Elbestawi MA, Spence AD et al (1997) General geometric modelling approach for machining process simulation. Int J Adv Manuf Technol 13(4):237-247 [12] Spence AD, Abrari F, Elbestawi MA (2000) Integrated solid modeller based solutions for machining. Comput-Aided Des 32(8/9):553-568 [13] Imani BM, Elbestawi MA (2001) Geometric simulation of ball-end milling operations. J Manuf Sci Eng 123(2):177-184 [14] Anderson RO (1978) Detecting and eliminating collisions in NC machining. Comput-Aided Des 10(4):231-237 [15] Hsu PL, Yang WT (1993) Realtime 3D simulation of 3-axis milling using isometric projection. Comput-Aided Des 25(4):215-224 [16] Van Hook T (1986) Real-time shaded NC milling display. In: Proceedings of the 13th annual conference on computer graphics and interactive techniques. pp 15-20. https://doi.org/10.1145/15922.15887 [17] Fussell BK, Jerard RB, Hemmett JG (2003) Modeling of cutting geometry and forces for 5-axis sculptured surface machining. Comput-Aided Des 35(4):333-346 [18] Zhang L (2011) Process modeling and toolpath optimization for five-axis ball-end milling based on tool motion analysis. Int J Adv Manuf Technol 57(9):905-916 [19] Benouamer MO, Michelucci D (1997) Bridging the gap between CSG and Brep via a triple ray representation. In: Proceedings of the fourth ACM symposium on solid modeling and applications. 14-16 May, Atlanta Georgia, USA, pp 68-79 [20] Boz Y, Erdim H, Lazoglu I (2015) A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece engagement calculations in three- and five-axis virtual milling. Int J Adv Manuf Technol 81(5):811-823 [21] Inui M, Huang Y, Onozuka H et al (2020) Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Proc Manuf 48:520-527 [22] Kaufman A (1987) Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. ACM SIGGRAPH Comput Gr 21(4):171-179 [23] Zhang Y, Garcia S, Xu W et al (2018) Efficient voxelization using projected optimal scanline. Graph Models 100:61-70 [24] Zhang L, Chen W, Ebert DS et al (2007) Conservative voxelization. Visual Comput 23(9):783-792 [25] Jang D, Kim K, Jung J (2000) Voxel-based virtual multi-axis machining. Int J Adv Manuf Technol 16(10):709-713 [26] Nie Z, Feng HY (2023) Integrated and efficient cutter-workpiece engagement determination in three-axis milling via voxel modeling. Int J Adv Manuf Technol 128(1):391-403 [27] Joy J, Feng HY (2017) Frame-sliced voxel representation: an accurate and memory-efficient modeling method for workpiece geometry in machining simulation. Comput-Aided Des 88:1-13 [28] Joy J, Feng HY (2017) Efficient milling part geometry computation via three-step update of frame-sliced voxel representation workpiece model. Int J Adv Manuf Technol 92(5):2365-2378 [29] Yau HT, Tsou LS (2009) Efficient NC simulation for multi-axis solid machining with a universal APT cutter. J Comput Inf Sci Eng 9(2):021001. https://doi.org/10.1115/1.3130231 [30] Lynn R, Contis D, Hossain M et al (2017) Voxel model surface offsetting for computer-aided manufacturing using virtualized high-performance computing. J Manuf Syst 43(2):296-304 [31] Lynn R, Dinar M, Huang N et al (2018) Direct digital subtractive manufacturing of a functional assembly using voxel-based models. J Manuf Sci Eng 140(2):021006. https://doi.org/10.1115/1.4037631 [32] Hossain MM, Nath C, Tucker TM et al (2018) A graphics processor unit-accelerated freeform surface offsetting method for high-resolution subtractive three-dimensional printing (machining). J Manuf Sci Eng 140(4):041012. https://doi.org/10.1115/1.4038599 [33] Yang Y, Zhang W, Wan M et al (2013) A solid trimming method to extract cutter-workpiece engagement maps for multi-axis milling. Int J Adv Manuf Technol 68(9):2801-2813 [34] Aras E, Albedah A (2014) Extracting cutter/workpiece engagements in five-axis milling using solid modeler. Int J Adv Manuf Technol 73(9):1351-1362 [35] Ferry W, Yip-Hoi D (2008) Cutter-workpiece engagement calculations by parallel slicing for five-axis flank milling of jet engine impellers. J Manuf Sci Eng 130(5):051011. https://doi.org/10.1115/1.2927449 [36] Kim GM, Cho PJ, Chu CN (2000) Cutting force prediction of sculptured surface ball-end milling using Z-Map. Int J Mach Tools Manuf 40(2):277-291 [37] Yousefian O, Balabokhin A, Tarbutton J (2020) Point-by-point prediction of cutting force in 3-axis CNC milling machines through voxel framework in digital manufacturing. J Intell Manuf 31(1):215-226 [38] Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface reconstruction algorithm. ACM SIGGRAPH Comput Gr 21(4):163-169 |