1. Quintino L, Allum CJ (1981) Pulsed GMAW: interactions between process parameters-part 1. Weld Mater Fabr 85:5–92. Smati Z (1985) Automated pulsed MIG welding. Metal Constr 18:38–443. Ganjigatti JP, Pratihar DK, Choudhary AR (2006) Modeling of the MIG welding process using statistical approaches. Int J Adv Manuf Technol 30:669–6764. Tham G, Yaakub MY, Abas SK et al (2012) Predicting the GMAW 3F T-Fillet geometry and its welding parameter. Int Symp Robotics Intel Sens Procedia Eng 41:1794–17995. Xu W, Wu C, Zou D (2008) Predicting of bead undercut defects in high speed gas metal arc welding. Frontier Mater Sci 2:402–4086. Katherasan D, Elias JV, Sathiya P et al (2012) Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J Intell Manuf 12:675–6847. Rao PS, Gupta OP, Murty SSN et al (2009) Effects of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int J Adv Manuf Technol 45:496–5058. Campbell SW, Galloway AM, McPherson NA (2012) Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases. Weld J91:174s–181s9. Ganjigatti JP, Pratihar DK, Choudhury AR (2007) Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process. J Mater Process Technol189:352–36610. Shiang SJ, Fong TY, Bin YJ (2011) Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate. Mater Des 32:1253–126111. Pal S, Pal SK, Samantaray AK (2008) Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J Mater Process Technol 202:464–47412. Malviya R, Pratihar DK (2011) Tuning of neural networks using particle swarm optimization to model MIG welding process. Swarm Evolut Comput 1:223–23513. Benyounis KY, Olabi AG (2008) Optimization of different welding process using statistical and numerical approaches: a reference guide. Adv Eng Softw 39:483–49614. Palani PK, Murugan N (2007) Optimization of weld bead geometry for stainless steel claddings deposited by FCAW.J Mater Process Technol 190:291–29915. Murugan N, Parmar RS (1994) Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel. J Mater Process Technol 41:381–39816. Cochran WG, Cox GM (1957) Experimental designs. Wiley, New York17. Sudhakaran R, Murugan V, Sethilkumar KM et al (2011) Effects of welding process parameters on weld bead geometry and optimization of process parameters to maximize depth to width ratio for stainless steel gas tungsten arc welded plates using genetic algorithm. J Sci Res 62:76–9418. Systat (1991) SYSTAT version 12. Systat Inc, San Jose 19. Hamza RMA, Aloraier A, Al-Faraj EA (2011) Investigation of the effect of welding polarity on joint bead geometry and mechanical properties of shielded metal arc welding process. J Eng Technol 2:100–11120. Kolhe KP, Datta CK (2008) Prediction of microstructure and mechanical properties of multipass SAW. J Mater Process Technol 197:241–24921. Capriccioli A, Frosi P (2009) Multipurpose ANSYS FE procedure for welding processes simulation. Fus Eng Des 84:546–55322. Kong F, Ma J, Kovacevic R (2011) Numerical and experimental study of thermally induced residual stress in the hybrid laser-GMA welding process. J Mater Process Technol 211:1102–1111 |