1. IEO (2018) International Energy Outlook 2018 ( IEO2018 ) Key takeaways. In: U.S. Energy Inf. Adm. https://www.eia.gov/pressroom/presentations/capuano_07242018.pdf. Accessed 2 Jan, 2021 2. Rahimifard S, Seow Y, Childs T (2010) Minimising embodied product energy to support energy efficient manufacturing. CIRP Ann Manuf Technol 59(1):25–28 3. Yuan C, Zhai Q, Dornfeld D (2012) A three dimensional system approach for environmentally sustainable manufacturing. CIRP Ann Manuf Technol 61:39–42 4. Zhang YJ (2014) Energy efficiency techniques in machining process: a review. Int J Adv Manuf Technol 71(5/8):1123–1132 5. He Y, Liu F, Wu T et al (2012) Analysis and estimation of energy consumption for numerical control machining. Proc Inst Mech Eng Part B J Eng Manuf 226:255–266 6. Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives. Industrial Press, New York 7. Ding H, Guo D, Cheng K et al (2014) An investigation on quantitative analysis of energy consumption and carbon footprint in the grinding process. Proc Inst Mech Eng Part B J Eng Manuf 228:950–956 8. Komanduri R, Iyengar S (2001) Conventional and super abrasive materials. In: encyclopedia of materials: science and technology, 2nd ed. Pergamon, pp 1629–1651 9. Nelson JA, Westrich RM (1974) Abrasive cutting in metallography. In: Metallographic specimen preparation. Springer, US, pp 41–54 10. Kannappan S, Malkin S (1972) Effects of grain size and operating parameters on the mechanics of grinding. J Manuf Sci Eng 94(3):833–842 11. Öpöz TT, Chen X (2012) Experimental investigation of material removal mechanism in single grit grinding. Int J Mach Tools Manuf 63:32–40 12. Stachowiak GW, Batchelor, Andrew WGB (2004) Experimental methods in tribology: Introduction. Tribol Ser 44:1–12 13. Rowe WB (2018) Towards high productivity in precision grinding. Inventions 3(2):24. https://doi.org/10.3390/inventions3020024 14. Nápoles AA, González RH, Sánchez EA et al (2019) Model based on an effective material-removal rate to evaluate specific energy consumption in grinding. Materials 12:939. https://doi.org/10.3390/ma12060939 15. Masoumi H, Safavi SM, Salehi M (2014) Grinding force, specific energy and material removal mechanism in grinding of HVOF-sprayed WC-Co-Cr coating. Mater Manuf Process 29:321–330 16. Singh V, Venkateswara RP, Ghosh S (2012) Development of specific grinding energy model. Int J Mach Tools Manuf 60:1–13 17. Shaw MC (1996) Energy conversion in cutting and grinding. CIRP Ann Manuf Technol 45:101–104 18. Malkin S, Joseph N (1975) Minimum energy in abrasive processes. Wear 32:15–23 19. Shaw MC, Farmer DA, Nakayama K (1967) Mechanics of the abrasive cutoff operation. J Manuf Sci Eng Trans ASME 89(3):495–502 20. Turchetta S (2010) Cutting force in stone machining by diamond disk. Adv Mater Sci Eng 2010:631437. https://doi.org/10.1155/2010/631437 21. Azizi A, Mohamadyari M (2015) Modeling and analysis of grinding forces based on the single grit scratch. Int J Adv Manuf Technol 78:1223–1231 22. Brach K, Pai DM, Ratterman E et al (1988) Grinding forces and energy. J Manuf Sci Eng 110:25–31 23. Jain VK, Mote RG (2005) On the temperature and specific energy during electrodischarge diamond grinding (EDDG). Int J Adv Manuf Technol 26:56–67 24. Villagomez-Galindo M, Torre C, Romo-Castañeda JC et al (2016) Casting Fe-Al-based intermetallics alloyed with Li and Ag. J Mater Res 31:2473–2481 25. Alvi A (2018) S235JR non-alloy quality structural steel. https://www.materialgrades.com/s235jr-non-alloy-quality-structural-steel-2062.html. Accessed 10 May 2020 26. Iman W (2018) C45 medium carbon steel grade. Jul 2018. https://www.materialgrades.com/c45-medium-carbon-steel-grade-2082.html. Accessed 10 May 2020 27. 3M (2020) 3M, cut and grind wheel. https://www.3m.com/3M/en_US/metalworking-us/applications/cutting/. Accessed 3 Mar 2020 28. Wurm JD (1984) Machinist (AFSC 42750). Extension Course Institute, Air University 29. Sivasankar B (2008) Engineering chemistry. Tata McGrawHill New Delhi 30. Stepper motor or servomotor: Which should it be? https://www.motioncontroltips.com/stepper-motor-servomotor. Accessed 9 Jan 2021 31. Rowe WB (2014) Principles of modern grinding technology. Elsevier 32. García de Jalón J (1994) kinematic and dynamic simulation of multibody systems: the real-time challenge 33. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: Proceedings of the 13th CIRP international conference on life cycle engineering, 31 May – 2 June, 2006, Paris, France, pp 623–638 34. Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60(1):37–40 35. Li W, Winter M, Kara S et al (2012) Eco-efficiency of manufacturing processes: a grinding case. CIRP Ann Manuf Technol 61:59–62 36. Marinescu ID, Rowe WB, Dimitrov B et al (2004) Tribology of abrasive machining processes. William Andrew Inc, New York, US 37. Verhoeven J (2007) Steel metallurgy for the non-metallurgist. ASM International, Almere 38. Larson B, Schmerr L (2003) Collaboration for nondestructive testing education—extending the reach. AIP Conf Proc 657(1):1899–1904 39. Astakhov VP, Outeiro JC (2008) Metal cutting mechanics, finite element modelling. In: Machining: fundamentals and recent advances. Springer, London, pp 1–27 40. Buehler MJ (2008) Atomistic modeling of materials failure. Springer Science & Business Media 41. Yousefi R, Ichida Y (2000) Study on ultra-high-speed cutting of aluminum alloy: formation of welded metal on the secondary cutting edge of the tool and its effects on the quality of finished surface. Precis Eng 24:371–376 42. Hameed S, Rojas HAG, Benavides JIP et al (2018) Influence of the regime of electropulsing-assisted machining on the plastic deformation of the layer being cut. Materials 11(6):886. https://doi.org/10.3390/ma11060886 43. Morris DG, Muñoz-Morris MA, Requejo LM (2007) Work hardening in Fe-Al alloys. Mater Sci Eng A 460:163–173 44. Liu CT, George EP, Maziasz PJ et al (1998) Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design. Mater Sci Eng A 258:84–98 45. Saigal A, Yang W (2003) Analysis of milling of iron aluminides. J Mater Process Technol 132:149–156 46. Zhang T, Jiang F, Yan L et al (2018) Research on the size effect of specific cutting energy based on numerical simulation of single grit scratching. J Manuf Sci Eng 140(7):071017. https://doi.org/10.1115/1.4039916 47. Linke B, Garretson I, Torner FM (2017) Grinding energy modeling based on friction, plowing and shearing. J Manuf Sci Eng 139(12):121009. https://doi.org/10.1115/1.4037239 48. Wu C, Li B, Yang J et al (2016) Prediction of grinding force for brittle materials considering co-existing of ductility and brittleness. Int J Adv Manuf Technol 87:1967–1975 49. Sinha MK, Ghosh S, Paruchuri VR (2019) Modelling of specific grinding energy for Inconel 718 superalloy. Proc Inst Mech Eng Part B J Eng Manuf 233:443–460 50. Kupka M (2006) High temperature strengthening of the FeAl intermetallic phase-based alloy. Intermetallics 14:149–155 51. George EP, Baker I (1998) Thermal vacancies and the yield anomaly of FeAl. Intermetallics 6:759–763 |