1. Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28(4):044005. https://doi.org/10.1088/1361-6501/aa5c4f 2. Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng Trans ASME 136(6):060801. https://doi.org/10.1115/1.4028540 3. Pavlov M, Doubenskaia M, Smurov I (2010) Pyrometric analysis of thermal processes in SLM technology. Phys Procedia 5(PART 2):523–531 4. Lott P, Schleifenbaum H, Meiners W et al (2011) Design of an optical system for the in situ process monitoring of selective laser melting (SLM). Phys Procedia 12(PART 1):683–690 5. Eschner N, Weiser L, Häfner B et al (2018) Development of an acoustic process monitoring system for selective laser melting (SLM). Solid Free Fabr Symp 2017:2097–2117 6. Fisher BA, Lane B, Yeung H et al (2018) Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manuf Lett 15:119–121 7. Colosimo BM, Grossi E, Caltanissetta F et al (2020) Penelope: a novel prototype for in situ defect removal in LPBF. OM 72(3):1332–1339 8. Caltanissetta F, Grasso M, Petrò S et al (2018) Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion. Addit Manuf 24(8):183–199 9. Kanko JA, Sibley AP, Fraser JM (2016) In situ morphology-based defect detection of selective laser melting through inline coherent imaging. J Mater Process Technol 231:488–500 10. Smith RJ, Hirsch M, Patel R et al (2016) Spatially resolved acoustic spectroscopy for selective laser melting. J Mater Process Technol 236:93–102 11. Martin AA et al (2019) Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat Commun 10(1):1–10 12. Paulson NH, Gould B, Wolff SJ et al (2020) Correlations between thermal history and keyhole porosity in laser powder bed fusion. Addit Manuf 34:101213. https://doi.org/10.1016/j.addma.2020.101213 13. Grasso M, Laguzza V, Semeraro Q et al (2016) In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. J Manuf Sci Eng 139(5):051001. https://doi.org/10.1115/1.4034715 14. Finazzi V, Demir AG, Biffi CA et al (2019) Design rules for producing cardiovascular stents by selective laser melting: geometrical constraints and opportunities. Procedia Struct Integr 15:16–23 15. Khairallah SA, Martin AA, Lee JRI et al (2020) Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368(6491):660–665 16. Caprio L, Demir AG, Previtali B (2018) Influence of pulsed and continuous wave emission on melting efficiency in selective laser melting. J Mater Process Tech 266:429–441 17. Demir AG, Previtali B (2017) Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Mater Des 119:338–350 18. Demir AG, Colombo P, Previtali B (2017) From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: effect of temporal and spatial pulse overlap in part quality. Int J Adv Manuf Technol 91(5/8):2701–2714 19. Demir AG, Mazzoleni L, Caprio L et al (2019) Complementary use of pulsed and continuous wave emission modes to stabilize melt pool geometry in laser powder bed fusion. Opt Laser Technol 113:15–26 20. Hofman JT, Pathiraj B, Van Dijk J et al (2012) A camera based feedback control strategy for the laser cladding process. J Mater Process Tech 212(11):2455–2462 21. Song L, Mazumder J (2011) Feedback control of melt pool temperature during laser cladding process. IEEE Trans Control Syst Technol 19(6):1349–1356 22. Duflou JR, Sichani EF, De Keuster J et al (2009) Developement of a real time monitoring and adaptive control for laser flame cutting. J Laser Appl 2009:527–536 23. Postma S, Aarts RGKM, Meijer J et al (2018) Penetration control in laser welding of sheet metal using optical sensors. Proc of ICALEO 2001:1083–1092 24. Kempen KJP, Vrancken B, Thijs L et al (2013) Lowering thermal gradients in selective laser melting by pre-heating the baseplate. Solid Free Fabr Symp Proc 24:131–139 25. Demir AG, Previtali B (2017) Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction. Int J Adv Manuf Technol 93(5):2697–2709 26. Li Z, Xu R, Zhang Z et al (2018) The influence of scan length on fabricating thin-walled components in selective laser melting. Int J Mach Tools Manuf 126:1–12 27. Zeng K, Pal D, Gong HJ et al (2015) Comparison of 3DSIM thermal modelling of selective laser melting using new dynamic meshing method to ANSYS. Mater Sci Technol 31(8):945–956 28. Bugatti M, Semeraro Q (2018) Limitations of the inherent strain method in simulating powder bed fusion processes. Addit Manuf 23:329–346 29. Druzgalski CL, Ashby A, Guss G et al (2020) Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing. Addit Manuf 34:101169. https://doi.org/10.1016/j.addma.2020.101169 30. Mazzoleni L, Demir AG, Caprio L et al (2019) Real-time observation of melt pool in selective laser melting: spatial, temporal and wavelength resolution criteria. IEEE Trans Instrum Meas 69(4):1179–1190 31. Renken V, von Freyberg A, Schünemann K et al (2019) In-process closed-loop control for stabilising the melt pool temperature in selective laser melting. Prog Addit Manuf 4:411–421 32. Yeung H, Lane BM, Donmez MA et al (2018) Implementation of advanced laser control strategies for powder bed fusion systems. Procedia Manuf 26:871–879 33. Craeghs T, Bechmann F, Berumen S et al (2010) Feedback control of layerwise laser melting using optical sensors. Phys Proc 5(PART 2):505–514 34. Mercelis P, Kruth JP, Van Vaerenbergh J (2007) Feedback control of selective laser melting. Proc 15th Int Symp Electromachining, ISEM 2007, pp 421–426 35. Hirsch M et al (2017) Assessing the capability of in-situ nondestructive analysis during layer based additive manufacture. Addit Manuf 13:135–142 36. Demir AG, De Giorgi C, Previtali B (2018) Design and implementation of a multisensor coaxial monitoring system with correction strategies for selective laser melting of a maraging steel. J Manuf Sci Eng 140(4):041003. https://doi.org/10.1115/1.4038568 37. Lane B, Heigel J, Ricker RE et al (2020) Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Integr Mater Manuf Innov 9(1):16–30 38. Pacher M, Mazzoleni L, Caprio L et al (2019) Estimation of melt pool size by complementary use of external illumination and process emission in coaxial monitoring of selective laser melting. J Laser Appl 31(2):022305. https://doi.org/10.2351/1.5096117 39. Mazzoleni L, Caprio L, Pacher M et al (2018) External illumination strategies for melt pool geometry monitoring in SLM. JOM 71:928–937 40. Adnan M, Lu Y, Jones A et al (2018) Application of the fog computing paradigm to additive manufacturing process monitoring and control. T Emerg Telecommun T 29(4):1–14 41. Clijsters S, Craeghs T, Buls S et al (2014) In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75(5):1089–1101 42. Vasileska E, Demir AG, Colosimo BM et al (2020) Layer-wise control of selective laser melting by means of inline melt pool area measurements. J Laser Appl 32(2):022057. https://doi.org/10.2351/7.0000108 43. Hooper PA (2018) Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf 22:548–559 44. Heigel JC, Lane BM (2018) Measurement of the melt pool length during single scan tracks in a commercial laser powder bed fusion process. J Manuf Sci Eng Trans ASME 140(5):051012. https://doi.org/10.1115/1.4037571 45. Spierings AB, Levy G (2009) Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades. 20th Annu Int Solid Free Fabr Symp SFF, pp 342–353 46. Lane B, Moylan S, Whitenton EP et al (2016) Thermographic measurements of the commercial laser powder bed fusion process at NIST. Rapid Prototyp J 22(5):778–787 47. Sih SS, Barlow JW (2004) The prediction of the emissivity and thermal conductivity of powder beds. Part Sci Technol 22(4):427–440 48. Fischer P, Romano V, Weber HP et al (2003) Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater 51(6):1651–1662 49. Phillips T, Ricker T, Fish S et al (2020) Design of a laser control system with continuously variable power and its application in additive manufacturing. Addit Manuf 34:101173. https://doi.org/10.1016/j.addma.2020.101173 |