1. Bentley S, Mantle A, Aspinwall D (1999) The effect of machining on the fatigue strength of a gamma titanium aluminide intertmetallic alloy. Intermetallics 7(8):967-969
2. Zhang LC, Kiat E, Pramanik A (2009) A briefing on the manufacture of hip joint prostheses. Adv Mater Res 76-78:212-216
3. Pramanik A, Zhang LC, Chen YQ (2010) Efficient machining of artificial hip joint components. Adv Mater Res 97-101:2269-2272
4. Zahavi E, Torbilo V, Press S (1996) Fatigue design:life expectancy of machine parts. CRC Press, Boca Raton
5. Javidi A, Rieger U, Eichlseder W (2008) The effect of machining on the surface integrity and fatigue life. Int J Fatigue 30(10):2050-2055
6. Zlatin N, Field M (1973) Procedures and precautions in machining titanium alloys. In:titanium science and technology. Springer, New York, pp 489-504
7. Novovic D, Dewes R, Aspinwall D et al (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2):125-134
8. Dieter GE (2015) Mechanical metallurgy. McGraw-Hill, New York
9. Koster W, Field M (2001) Effects of machining variables on the surface and structural metals. In:proceedings of the North American manufacturing research conference, SME
10. Mantle A, Aspinwall D (1997) Surface integrity and fatigue life of turned gamma titanium aluminide. J Mater Process Technol 72(3):413-420
11. Taylor D, Clancy O (1991) The fatigue performance of machined surfaces. Fatigue Fract Eng Mater Struct 14(2-3):329-336
12. Pramanik A, Littlefair G (2014) Developments in machining of stacked materials made of CFRP and titanium/aluminum alloys. Mach Sci Technol 18(4):485-508
13. Pramanik A, Basak A, Islam MN (2015) Effect of reinforced particle size on wire EDM of MMCs. Int J Mach Mach Mater 17(2):139-149
14. Jha SK, Szczepanski CJ, Golden PJ et al (2012) Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V. Int J Fatigue 42:248-257
15. Zhang H (1995) Investigation of machinability of titanium aluminides. Dissertation. University of Birmingham, Birmingham
16. Xie Q, Bayoumi AE, Kendall LA et al (1989) A study on residual stresses and tool wear induced by machining processes. In:Proceedings of North American manufacturing research conference XVII
17. Field M, Kahles JF, Cammett J (1972) Review of measuring methods for surface integrity. CIRP 21(2):219-238
18. Trail S, Bowen P (1995) Effects of stress concentrations on the fatigue life of a gamma-based titanium aluminide. Mater Sci Eng A 192:427-434
19. Koster W, Field M (1973) Effect of machining variables on the surface and structural integrity of Ti. In:proceedings of the North American metal working research conference
20. Klocke F, Welling D, Dieckmann J (2011) Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components. Procedia Eng 19:184-189
21. Jane?ek M, Nový F, Stráský J et al (2011) Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth. J Mech Behav Biomed Mater 4(3):417-422
22. Mower TM (2014) Degradation of titanium 6Al-4V fatigue strength due to electrical discharge machining. Int J Fatigue 64:84-96
23. Stráský J, Jane?ek M, Harcuba P et al (2011) The effect of microstructure on fatigue performance of Ti-6Al-4V alloy after EDM surface treatment for application in orthopaedics. J Mech Behav Biomed Mater 4(8):1955-1962
24. Mueller J, Rack H, Wagner L (2007) Effects of supra-and subtrans us heat treatments on fatigue performance of Ti-6Al-4V. In:Ti-2007 Sci Technol 383-386
25. Leinenbach C, Eifler D (2006) Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials 27(8):1200-1208
26. Sharman A, Aspinwall D, Dewes R et al (2001) The effects of machined workpiece surface integrity on the fatigue life of c-titanium aluminide. Int J Mach Tools Manuf 41(11):1681-1685
27. Campbell J, Rao KV, Ritchie R (1997) On the role of microstructure in fatigue-crack growth of c-based titanium aluminides. Mater Sci Eng A 239:722-728
28. Murali MS, Yeo SH (2005) Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method. Jpn J Appl Phys 44(7R):5254
29. Stefanescu D, Truman C, Smith D et al (2006) Improvements in residual stress measurement by the incremental centre hole drilling technique. Exp Mech 46(4):417-427
30. Hasçal?k A, Ç ayda? U (2007) Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl Surf Sci 253(22):9007-9016
31. Yu JW, Xiao P, Liao YS et al (2009) Surface integrity in electrical discharge machining of Ti-6Al-4V. Adv Mater Res 76-78:613-617
32. Aspinwall D, Soo S, Berrisford A et al (2008) Workpiece surface roughness and integrity after WEDM of Ti-6Al-4V and Inconel 718 using minimum damage generator technology. CIRP Ann-Manuf Technol 57(1):187-190
33. Newman JC Jr, Phillips EP, Swain MH et al (1992) Fatigue mechanics:an assessment of a unified approach to life prediction. Int J Fatigue 15(1):68
34. Pramanik A, Basak A, Islam MN et al (2015) Electrical discharge machining of 6061 aluminium alloy. Trans Nonferrous Met Soc China 25(9):2866-2874
35. Golden PJ, John R, Porter Iii WJ (2010) Investigation of variability in fatigue crack nucleation and propagation in alpha? beta Ti-6Al-4V. Procedia Eng 2(1):1839-1847
36. Kahles J, Field M (1967) Paper 4:surface integrity-a new requirement for surfaces generated by material-removal methods. doi:10.1243/PIME_CONF_1967_182_301_02
37. Griffiths B (1987) Mechanisms of white layer generation with reference to machining and deformation processes. J Tribol 109(3):525-530
38. Thiele JD, Melkote SN, Peascoe RA et al (1999) Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. J Manuf Sci Eng 122(4):642-649
39. Abrāo AM, Aspinwall DK (1996) The surface integrity of turned and ground hardened bearing steel. Wear 196(1):279-284
40. Sasahara H, Obikawa T, Shirakashi T (2004) Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models. Int J Mach Tools Manuf 44(7-8):815-822
41. Outeiro JC, Dias AM, Lebrun JL (2004) Experimental assessment of temperature distribution in three-dimensional cutting process. Mach Sci Technol 8(3):357-376
42. Schwach DW, Guo YB (2006) A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int J Fatigue 28(12):1838-1844
43. Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45% C steel. Int J Mach Tools Manuf 45(2):131-136
44. Abhang LB, Hameedullah M (2010) Chip-tool interface temperature prediction model for turning process. Int J Eng Sci Technol 2(4):382-393
45. García NV, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48-57
46. Rech J, Moisan A (2003) Surface integrity in finish hard turning of case-hardened steels. Int J Mach Tools Manuf 43(5):543-550
47. M'Saoubi R, Outeiro JC, Changeux B et al (1999) Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels. J Mater Process Technol 96(1-3):225-233
48. Fetullazade E, Akyildiz HK, Saritas S (2010) Effects of the machining conditions on the strain hardening and the residual stresses at the roots of screw threads. Mater Des 31(4):2025-2031
49. Field M (1971) Review of surface integrity of machined components. Ann CIRP 20(2):153-163
50. Akyildiz HK, Livatyali H (2010) Effects of machining parameters on fatigue behavior of machined threaded test specimens. Mater Des 31(2):1015-1022
51. Arola D, Williams CL (2002) Estimating the fatigue stress concentration factor of machined surfaces. Int J Fatigue 24(9):923-930
52. Dahlman P, Gunnberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147(2):181-184
53. Smith S, Melkote SN, Lara-Curzio E et al (2007) Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance. Mater Sci Eng A 459(1):337-346
54. Matsumoto Y, Hashimoto F, Lahoti G (1999) Surface Integrity generated by precision hard turning. CIRP Ann Manuf Technol 48(1):59-62
55. Hashimoto F, Guo YB, Warren AW (2006) Surface Integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Ann Manuf Technol 55(1):81-84
56. Guo YB, Yen DW (2004) Hard turning versus grinding-the effect of process-induced residual stress on rolling contact. Wear 256(3-4):393-399
57. Matsumoto Y, Magda D, Hoeppner DW et al (1991) Effect of machining processes on the fatigue strength of hardened AISI 4340 steel. J Manuf Sci Eng 113(2):154-159
58. Matsumoto Y, Barash MM, Liu CR (1986) Effect of hardness on the surface integrity of AISI 4340 steel. J Manuf Sci Eng 108(3):169-175
59. Pramanik A (2016) Electrical discharge machining of MMCs reinforced with very small particles. Mater Manuf Process 31(4):397-404
60. Ghanem F, Sidhom H, Braham C et al (2002) Effect of nearsurface residual stress and microstructure modification from machining on the fatigue endurance of a tool steel. J Mater Eng Perform 11(6):631-639
61. Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V)-theory to application. Mach Sci Technol 19(1):1-49
62. Ghanem F, Braham C, Sidhom H (2003) Influence of steel type on electrical discharge machined surface integrity. J Mater Process Technol 142(1):163-173
63. Mamalis AG, Vosniakos GC, Vaxevanidis NM (1987) On the surface integrity of mechanically and thermally worked metal plates. Adv Technol Plast 1:407-414
64. Bouzid Saï W, Ben SN, Lebrun JL (2001) Influence of machining by finishing milling on surface characteristics. Int J Mach Tools Manuf 41(3):443-450
65. Fordham J, Pilkington R, Tang C (1997) The effect of different profiling techniques on the fatigue performance of metallic membranes of AISI 301 and Inconel 718. Int J Fatigue 19(6):487-502
66. Suhr R (1988) High cycle fatigue(in high temperature materials). Inst Met Mech Test 226-287
67. Suresh S (1998) Fatigue of materials. Dissertation. Cambridge University Press, Cambridge
68. Siebel E (1957) Influence of surface roughness on the fatigue strength of steels and non-ferrous alloys. Eng Dig 18:109-112
69. Bayoumi MR, Abdellatif A (1995) Effect of surface finish on fatigue strength. Eng Fract Mech 51(5):861-870
70. Leverant G, Langer B, Yuen A et al (1979) Surface residual stresses, surface topography and the fatigue behavior of Ti-6AI-4V. Metall Trans A 10(2):251-257
71. Koster, W (1991) Effect of residual stress on fatigue of structural alloys. Practical applications of residual stress technology, conference proceedings, Indianapolis, Indiana
72. Griffiths B (2001) Manufacturing surface technology:surface integrity and functional performance. Elsevier, Amsterdam
73. Hirano K, Enomoto K, Hayashi E et al (1997) Effects of water jet peening on corrosion resistance and fatigue strength of type 304 stainless steel. J Soc Mater Sci Jpn 45(7):740-745 |