1. Zhan LH, Lin JG, Dean TA (2011) A review of the development of creep age forming:experimentation, modelling and applications. Int J Mach Tool Manuf 51(1):1-17 2. Allen RM, Sande VD (1978) A high resolution transmission electron microscope study of early stage precipitation on dislocation lines in Al-Zn-Mg. Metall Trans A 9(9):1251-1258 3. Deschamps A, Livet F, Bréchet Y (1998) Influence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties. Acta Mater 47(1):281-292 4. Feng ZQ, Yang YQ, Huang B et al (2010) Precipitation process along dislocations in Al-Cu-Mg alloy during artificial aging. Mater Sci Eng A 528(2):706-714 5. Feng ZQ, Yang YQ, Huang B et al (2011) Variant selection and the strengthening effect of S precipitates at dislocations in Al-CuMg alloy. Acta Mater 59(6):2412-2422 6. Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in metals and alloys. Butterworth-Heinemann, Oxford 7. Miresmaeili SM, Nami B (2014) Impression creep behavior of Al-1.9% Ni-1.6% Mn-1% Mg alloy. Mater Des 56 (4):286-290 8. Sklenicka V, Dvorak J, Kral P et al (2005) Creep processes in pure aluminium processed by equal-channel angular pressing. Mater Sci Eng A 410(12):408-412 9. Nó ML, Juan JS (1993) Structure and mobility of polygonized dislocation walls in high purity aluminium. Mater Sci Eng A 164((s1-2)):153-158 10. Li Y, Shi ZS, Lin JG et al (2017) A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy. Int J Plast 89:130-149 11. Zhang J, Deng YL, Zhang XM (2013) Constitutive modeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates. Mater Sci Eng A 563(7):8-15 12. Li Y, Shi ZS, Lin JG et al (2017) Extended application of a unified creep-ageing constitutive model to multistep heat treatment of aluminium alloys. Mater Des 122:422-432 13. Lin JG, Ho KC, Dean TA (2006) An integrated process for modelling of precipitation hardening and springback in creep age-forming. Int J Mach Tool Manuf 46(11):1266-1270 14. Ho KC, Lin JG, Dean TA (2004) Modelling of springback in creep forming thick aluminum sheets. Int J Plast 20(4):733-751 15. Lin YC, Zhang JL, Liu G et al (2015) Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al-ZnMg-Cu alloy. Mater Des 83:866-875 16. Lei C, Li H, Fu J et al (2018) Non-isothermal creep aging behaviors of an Al-Zn-Mg-Cu alloy. Mater Charact 144:431-439 17. Lei C, Yang H, Li H et al (2017) Dependences of microstructures and properties on initial tempers of creep aged 7050 aluminum alloy. J Mater Process Technol 239:125-132 18. Li Y, Shi Z, Lin J et al (2016) Experimental investigation of tension and compressive creep-ageing behaviour of AA2050 with different initial tempers. Mater Sci Eng A 657:299-308 19. Lei C, Li H, Zheng GW et al (2017) Thermal-mechanical loading sequences related creep aging behaviors of 7050 aluminum alloy. J Alloy Compd 731:90-99 20. Fu J, Li H, Lei C et al (2018) Role of thermal-mechanical loading sequence on creep aging behaviors of 5A90 Al-Li alloy. J Mater Process Technol 255:354-363 21. Chen JF, Jiang JT, Zhen L et al (2014) Stress relaxation behavior of an Al-Zn-Mg-Cu alloy in simulated age-forming process. J Mater Process Technol 214(4):775-783 22. Hu LB, Zhan LH, Liu ZL et al (2017) The effects of pre-deformation on the creep aging behavior and mechanical properties of Al-Li-S4 alloys. Mater Sci Eng A 703:496-502 23. Xu YQ, Zhan LH, Li WK (2017) Effect of pre-strain on creep aging behavior of 2524 aluminum alloy. J Alloy Compd 691:564-571 24. Wang D, Ni DR, Ma ZY (2008) Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy. Mater Sci Eng A 494(1-2):360-366 25. Berg LK, Gjønnes J, Hansen V et al (2001) GP-zones in Al-ZnMg alloys and their role in artificial aging. Acta Mater 49(17):3443-3451 26. Sha G, Cerezo A (2004) Early-stage precipitation in Al-Zn-MgCu alloy (7050). Acta Mater 52(15):4503-4516 27. Ying XR, Du YX, Song M et al (2016) Direct measurement of precipitate induced strain in an Al-Zn-Mg-Cu alloy with aberration corrected transmission electron microscopy. Micron 90:18-22 28. Tsumuraya K, Miyata Y (1983) Coarsening models incorporating both diffusion geometry and volume fraction of particles. Acta Metall 31(3):437-452 29. Lin YC, Jiang YQ, Zhang XC et al (2014) Effect of creep-aging processing on corrosion resistance of an Al-Zn-Mg-Cu alloy. Mater Des 61(9):228-238 30. Pešička J, Kužel R, Dronhofer A et al (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51(16):4847-4862 31. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Mater 1(1):22-31 32. Chen YZ, Barth HP, Deutges M et al (2013) Increase in dislocation density in cold-deformed Pd using H as a temporary alloying addition. Scr Mater 68(9):743-746 33. Ungar T (2004) Microstructural parameters from X-ray diffraction peak broadening. Scr Mater 51(8):777-781 34. Rai SK, Kumar A, Shankar V et al (2004) Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements. Scr Mater 51(1):59-63 35. Rodgers BI, Prangnell PB (2016) Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195. Acta Mater 108:55-67 |