1. Zhang YX, Kang RK, Guo DM et al (2006) Raman microspectroscopy study on the ground surface of monocrystalline silicon wafers. Key Eng Mater 304/305:241-245 2. Zhou P, Xu S, Wang Z et al (2016) A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers. Int J Mach Tools Manuf 107:1-7 3. Gao S, Kang RK, Guo DM et al (2010) Study on the subsurface damage distribution of the silicon wafer ground by diamond wheel. Adv Mater Res 126/128:113-118 4. Bieck F, Spiller S, Molina F et al (2010) Integration of carrierless ultrathin wafers into a TSV process flow. In:The 12th electronics packaging technology conference, 8-10 Dec 2010, Singapore. https://doi.org/10.1109/EPTC.2010.5702703 5. Burghartz JN (2011) Ultra-thin chip technology and applications. Springer, New York 6. Schröder S, Schröder M, Reinert W et al (2016) TAIKO wafer ball attach. In:IEEE 18th electronics packaging technology conference (EPTC), 30 Nov-3 Dec 2016, Singapore. https://doi.org/10.1109/EPTC.2016.7861519 7. Inoue F, Jourdain A, Peng L et al (2017) Influence of Si wafer thinning processes on (sub)surface defects. Appl Surf Sci 404:82-87 8. Sun J, Qin F, Chen P et al (2016) A predictive model of grinding force in silicon wafer self-rotating grinding. Int J Mach Tools Manuf 109:74-86 9. Pei ZJ, Strasbaugh A (2002) Fine grinding of silicon wafers:designed experiments. Int J Mach Tools Manuf 42:395-404 10. Zhang YX, Li YM, Gao W et al (2008) Experimental investigation on subsurface damage depth of ground silicon wafers in wafer-rotating grinding. Diam Abras Eng 4:3-7 11. Young HT, Liao HT, Huang HY (2007) Novel method to investigate the critical depth of cut of ground silicon wafer. J Mater Process Technol 182:157-162 12. Lin B, Zhou P, Wang Z et al (2018) Analytical elastic-plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer. J Manuf Sci Eng Trans ASME 140:1-7 13. Gao S, Wang Z, Kang R et al (2016) Model of grain depth of cut in wafer rotation grinding method for silicon wafers. J Mech Eng 52(17):86-93 14. Sun J, Chen P, Qin F et al (2018) Modelling and experimental study of roughness in silicon wafer self-rotating grinding. Precis Eng 51:625-637 15. Zhang L, Chen P, An T et al (2019) Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process. Curr Appl Phys 19:570-581 16. Sharp KW, Miller MH, Scattergood RO (2000) Analysis of the grain depth-of-cut in plunge grinding. Precis Eng 24:220-230 17. Zhou L, Shimizu J, Shinohara K et al (2003) Three-dimensional kinematical analyses for surface grinding of large scale substrate. Precis Eng 27:175-184 18. Zhu X, Kang R, Wang Y et al (2010) Development of threedimensional dynamometer for wafer grinder. Adv Mater Res 126/128:361-366 19. Pähler D (2011) Measurement of local contact zone forces in rotational grinding of silicon wafers. Int J Mechatron Manuf Syst 4:511-539 20. Ebina Y, Yoshimatsu T, Zhou L et al (2015) Process study on large-size silicon wafer grinding by using a small-diameter wheel. J Adv Mech Des Syst Manuf 9:1-12 21. Pei ZJ, Strasbaugh A (2002) Fine grinding of silicon wafers:grinding marks. ASME Int Mech Eng Congr Expos Proc 42:311-320 22. Chidambaram S, Pei ZJ, Kassir S (2003) Fine grinding of silicon wafers:a mathematical model for grinding marks. Int J Mach Tools Manuf 43:1595-1602 23. Huo FW, Kang RK, Li Z et al (2013) Origin, modeling and suppression of grinding marks in ultra precision grinding of silicon wafers. Int J Mach Tools Manuf 66:54-65 |